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Abstract—This paper studies programmer visual attention on
code as it relates to underlying function call graphs during code
summarization. Programmer visual attention refers to where
people look when performing a software engineering task, and
code summarization is the task of writing a natural language
description about a section of source code. Prior work has studied
programmers’ visual attention during code summarization, with
the vast majority of research effort placed on details in single
functional units of code. There have not been any techniques
developed to understand code comprehension at the project
level due to the difficulty of this task, despite the nature of
most real-world methods as embedded within complex project
context. This paper focuses on the visual attention paid to the
call graph context in which a method sits. We analyze visual
attention coverage of call graphs with graph-based metrics,
such as the depth that programmers traverse or the amount
of coverage they attain. We use these metrics, among other
means, to reevaluate an existing dataset from a previous eye-
tracking study of programmers (n = 10) that considered basic
properties of programmer visual attention in a project context.
We then created a new dataset (n = 12) using the same
procedures specifically for this paper, resulting in a total of 88
hours of recorded visual behavior on source code. We used our
proposed metrics to analyze how participants’ visual strategies
correlated with their code summary quality, and confidence in
their summaries. Interestingly, we found that higher coverage of
the call graph was associated with decreases in both summary
quality and participants’ confidence.

I. INTRODUCTION

Code summarization is the task of writing a natural lan-
guage description of code. Given the importance of effective
documentation for software maintenance and code compre-
hension [1, 2], an improved understanding of effective human
strategies for summary writing can facilitate efforts to advance
code summarization techniques, including automated code
summarization, developer tools, and education. To study how
programmers discover and use relevant information during
code summarization tasks, we consider programmers’ visual
attention, which refers to where a programmer looks while
completing an SE task.

We study programmers’ visual attention using eye tracking,
which is a technology that has illuminated programmers’
strategies and mental models for comprehending and summa-
rizing source code [3, 4]. The vast majority of code compre-
hension research has focused on isolated functional units of
code [5, 6, 7, 8], and existing metrics used in SE to study code
comprehension were developed for studying visual attention
on isolated code units [9]. Our understanding of code com-

prehension at the larger project level is limited partly because
we lack meaningful eye-tracking metrics to characterize pro-
grammers’ code comprehension behaviors at this systematic
level. Previous work that has visualized and described large
projects using the function call graph [10, 11, 12], which is a
directed graph representing call relations between functional
units in code. Using this structure, we propose to fill the gap by
exploring programmers’ visual attention on code as it relates
to underlying call graphs, thereby deepening our foundational
understanding of cognitive processes of code comprehension
at the project level. We hypothesize and demonstrate that the
function call graph is a promising structure for analyzing how
programmers gather contextual information about underlying
connections between functional units of code in larger projects.

Studying how programmers develop a high-level under-
standing of code within a project also has strong implications
for automated code summarization. In particular, prior research
has found that deep learning approaches for code summariza-
tion have substantially benefited from both including the call
graph to provide models with context [13], and incorporating
human eye-tracking data to indicate connections in code that
are important from a human perspective [14]. Thus, integrating
human eye-tracking data on code with underlying call graphs
has potential for guiding deep learning models with human
patterns of code comprehension within a larger project context.

In this study, we analyzed programmers’ visual attention
on the underlying call graph as they summarized methods in
full open source Java projects. Specifically, we first developed
metrics that integrate eye-tracking data with the call graph,
and deployed those metrics to perform novel analyses of
programmers’ summarization strategies on an existing dataset
of human eye-tracking data collected from the University of
Notre Dame (n; = 10) [15]. That dataset explored basic
measures of programmers’ visual attention on code in a project
level context, but overlooked programmers’ visual behaviors
on call graphs. We then tested the replicability of our design
and findings with a new human study (n, = 12). Specifically,
we collected a new dataset for this study by following the
same experimental procedures and recruiting participants from
Vanderbilt University, which is a comparable institution. In
both datasets, each participant could take part in the study for
five approximately 90 minute sessions to summarize methods
in five separate projects. As a result, we applied our analyses
on a total of 88 hours of programmers’ recorded visual
behavior. For both datasets, we tested how our metrics of call



graph coverage were correlated with downstream summary
quality, as well as participants’ confidence in their summaries.
By examining participants’ confidence, we could explore
whether certain visual strategies might lead programmers to
overestimate the quality of their summaries, and potentially
contribute inadequate documentation.

Our study is guided by three research questions:

« RQI1. When summarizing a method in context, how do
programmers interact with the method’s call graph?

e RQ2. How do strategies for traversing a method’s call
graph affect the quality of summaries?

« RQ3. How do strategies for traversing a method’s call
graph affect participants’ confidence in their summaries?

To first validate a crucial hypothesis for this study that
programmers comprehend code at the project level by relying
on the call graph, we initially analyzed the eye-tracking data
and found that participants spent as much as 79.2% of their
total time fixating on target methods and their call graphs, sug-
gesting that programmers do preferentially use this structure as
a comprehension tool for code situated within larger projects.
Interestingly, as the first study to investigate programmers’
visual attention on call graphs in complete projects, we found
that higher call graph coverage was correlated with both lower-
quality summaries and lower confidence in ones’ summaries.
However, we found nuance when participants traversed either
up (callers) or down (callees) in the call graph; the former
contains high-level usage examples, while the latter contains
low-level implementation details.

The contributions of this study are summarized as follows:

¢ A new human eye-tracking study for replication of the
proposed attention analysis on call graphs following the
same study procedures as a previous study.

o An implementation of our study design with two datasets,
which together provide further validation and facilitate
the analysis of project-level code comprehension.

« Novel metrics to integrate eye-tracking data with call
graphs.

o Findings that increased coverage of the call graph was
correlated with decreases in summary quality and partic-
ipant confidence.

o Publicly available data and analysis code here!

II. RELATED WORK

In this section, we describe how our work relates to research
on call graphs, eye-tracking, and code comprehension.

Call Graphs and Automated Code Summarization. The
call graph is a directed graph that represents a software system
with nodes representing a software unit (e.g., a method or
function) and edges representing a direct relationship, such as
a function call [12]. For a given method, its callees are the
units that the method calls, while its callers are the units that
call the method. As such, the callee graph represents low-level
methods used in the implementation of the given method, and
the caller graph represents high-level methods that use the
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given method. Previous work has created developer tools based
on the call graph, including 2D visualizations, interactive
visualizations, and clustering-based approaches [10, 11, 12].
Researchers have also leveraged context from the call graph
to advance automated code summarization work [13, 16, 17].
Specifically, Bansal et al. introduced a Graph Neural Network
that was trained on target methods’ call graphs to improve
the model’s contextual understanding [18]. In this study, we
integrate human eye-tracking data with the call graph to un-
derstand programmers’ project-level comprehension patterns.
Code Comprehension. Efforts to incorporate human atten-
tion patterns into automated code summarization methods rely
on an understanding of human code comprehension. Previous
work has developed mental models of how programmers
comprehend and navigate codebases, which seek to explain
how programmers search for and identify relevant sources of
information in code. For example, many models are based on
theories of “information foraging,” where programmers search
through relevant areas of code to maximize “information per
unit cost” [19]. From an information foraging perspective, a
call relation (e.g., a call graph edge) may suggest that two
areas of code are mutually relevant [20]. In this study, we con-
sider how traversing call relations during code summarization
can provide a window into information foraging strategies.
Eye-tracking in Software Engineering. To understand
programmers’ code comprehension strategies, researchers of-
ten use eye tracking, which allows researchers to analyze
data on human fixations (gazes that remain stable for 100-
300ms) and saccades (rapid eye movements lasting around 40-
50ms) [21]. While little cognitive processing typically happens
during saccades [22], humans are theorized to process visual
information during fixations, which can provide a window into
human cognition [21]. Researchers also consider scan paths,
which are defined as the sequential ordering of fixations [21],
and give insight into contingencies between fixations. Eye-
tracking technology has been applied to various code compre-
hension tasks, including debugging and code review [23, 24].
Previous work has also applied eye-tracking analysis to code
summarization tasks, identifying key components of code,
mapping gaze patterns onto the abstract syntax tree, and testing
mental cognition models (e.g., “top-down” or “bottom-up”) [7,
25, 26]. Wallace et al. presented a dataset of eye-tracking data
gathered from code summarization tasks in project context,
and presented baseline metrics and conclusions from their
study [15]. We build off their work by considering eye-tracking
metrics that relate eye-tracking data to the call graph.

III. METHODS
This section outlines our methodology for eye-tracking data
collection and analysis, as well as our call graph analyses.

A. Study Design.

To collect eye-tracking data from programmers summa-
rizing Java methods in the context of a larger project, we
conducted a human study where programmers were given
five open source Java projects and asked to summarize eight



methods from each. Each programmer could participate in
five sessions to summarize methods from each of the projects
(taking into consideration of the length for each session to
avoid fatigue). This design follows that of Wallace et al. [15],
which includes additional study details. In this study, we ap-
plied novel analysis techniques mapping human gaze data onto
method call graphs, both to the data from the original study
from Wallace et al. (Study 1), and to a new dataset collected
at Vanderbilt University (Study 2). The two individual studies
allow us to test the replicability of findings between Study
1 and Study 2. Since these studies follow the same design,
we also report results from combining the datasets, which
grants more statistical power to potentially uncover important
findings on programmers’ visual attention on call graphs.
Participants. For our new study (Study 2), we collected
over 48 total study hours, which amounted to 45 hours of
time-on-task eye-tracking data across 12 participants with at
least one year of Java experience each. Participants were
recruited via in-class presentations as well as email, and
compensated 60 USD per session. We obtained ethics approval
(IRB: #220604), and collected informed consent which clearly
indicated participants could leave at any time. As indicated in
Table I, participants had an average of 4.6 years of program-
ming experience, two participants identified as female, and
ten identified as male. Three identified as non-native fluent
English speakers, and nine as native English speakers. Across
both studies (Study 1 and Study 2), there were 22 participants,
over 100 total study hours, and over 88 time-on-task hours.

TABLE I: Participant demographic information for both stud-
ies separately and combined.

Study Male | Female | Native English | Non-Native English | Avg. Experience
Study 1 6 4 4 6 5.0 years
Study 2 10 2 9 3 4.6 years
Combined 16 6 13 9 4.8 years

Tasks. For each session, we presented participants with
eight methods from one of five open source Java projects rang-
ing from games to machine learning toolboxes. The projects
included Scrimage (image manipulation library), MLTK (col-
lection of machine learning algorithms), OpenAudible (desk-
top application for audiobooks), MALLET (statistical pack-
age for natural language processing), and FreeCol (strategy
game). We used the same projects and methods as those
selected by Wallace et al., who aimed for sample diversity
and generalizability [15]. Those researchers chose open source
projects with 90% of their source code in Java (due to its
wide usage in industry [27]). To keep participants’ navigation
and comprehension self-contained, projects were excluded that
depended heavily on other codebases. The chosen projects
ranged in age by 18 years and were between 5k and 128k
lines of code. Methods were chosen that were non-trivial (i.e.,
excluded getters and setters), were called at least twice, and
performed some core functionality in the project.

For our analyses, we excluded methods without a relevant
call graph. There were 11 methods with no callees, and O
methods with no callers. Therefore, our analysis included

29 methods for callee graph analysis, and 40 methods for
caller graph analysis. Data from 57 method summaries that
were incomplete due to incomplete eye-tracking data or other
technical errors were also excluded. The amount of data we
analyzed in the study (88 hours total, 45 hours for the new
study) was calculated after excluding this data.

Procedure. Following procedures from Study 1 [15], partic-
ipants were given 90 minutes for each session and instructed to
generate three sentence summaries for a given method within
a project. The first described the purpose of the method, the
second described the method’s specific functionalities, and the
third described its use within the overall project. Participants
were instructed to rate their confidence in each summary on
a scale from 1 to 5. Experiments were run in an office room
with natural lighting.

Eye Tracking. To record eye-tracking data, we used a Tobii
Pro Fusion eye tracker mounted at the bottom of a Spectre 24-
inch monitor with a resolution of 1920x1080 and 60Hz screen
refresh rate. The eye tracker records data at a frequency of
120Hz, and has an accuracy of 0.03° and precision of 0.04° in
optimal conditions. Projects were presented to participants in
Eclipse, and we used the iTrace suite to interface with the eye
tracker. Specifically, we used (1) iTrace Core, which manages
core eye-tracking and screen recording functionality, (2) the
iTrace Eclipse plugin, which connects data from iTrace Core
to the IDE and specific file information, and (3) the iTrace
toolkit, which processes eye-tracking data [28, 29, 30].

Qualitative Annotation. In this study, we analyzed how
visual patterns with respect to the call graph affected down-
stream summary quality, so we rated participants’ summaries
to obtain quality scores. Specifically, each summary was
scored by two authors independently on four subscore cat-
egories (rated out of 5): accuracy, conciseness, completeness,
and clarity [15]. For every question, the researchers deducted
a point for each instance of inaccuracy, incompleteness, and
so on. Each subscore category was assessed independently of
other factors, and a total quality score was calculated as the
sum of the subscores (rated out of 20). We used the original
authors’ ratings of participants’ summaries for those in Study
1, and two authors in this study with 7 and 10 years of coding
experience rated participants’ summaries for Study 2. In both
Study 1 and Study 2, graders met to discuss and resolve all
conflicting scores, and agreed upon all final scores.

B. Eye Tracking Metrics

For this study mapping visual behavior onto method call
graphs, we use standard measures from eye-tracking research
of fixations, saccades, and scan paths [21]. To distinguish
fixations from saccades, we used the I-VT velocity filter
provided by the iTrace toolkit [28]. This filter identified a
fixation as consecutive gazes with velocities below 50 pix-
els/ms and an overall duration above 80 ms. Otherwise, an
eye movement was identified as a saccade. Following standard
procedures, we computed the fixation counts and durations.
We use consecutive fixations to compute scan paths to analyze
programmers’ strategies for traversing method call graphs.



C. Call Graph Analysis

Call Graphs. We define the callee graph of a target method
as that which contains methods that the target method calls,
and the caller graph of a method as that which contains
methods that call the target method. We represent each method
within both types of call graphs as a node, and each call as
an edge. We define a method’s depth within the call graph as
the number of calls between it and the target method being
summarized. If the same method appears at multiple depths
within a given call graph, we distinguished these nodes based
on their depths.

Call Graph Generation. To generate callee and caller
graphs for each target method summarized by participants,
we used IntelliJ’s “Call Hierarchy” tool. To reduce extreme
variation in call graph size, in our analyses we only included
methods within five calls of the target method. Participants
did not look five or more calls deep in 98.5% of trials for the
callee graph, and 97.3% of trials for the caller graph.

Method Annotation. To map eye-tracking data onto call
graphs, we annotated each fixation with either the signature
of the method being fixated on, or a label indicating that
the fixation corresponded to a non-method. We defined the
bounds of a method as starting from the row and column of its
declaration, and ending at its closing bracket. We considered
all coordinates between these two points as belonging to that
method. For fixations on nested methods, we annotated the
fixation with the inner method.

D. Call Graph Eye Tracking Metrics

In this section, we describe how we adapted established eye
tracking metrics to the purpose of call graph analysis. Broadly,
we used these metrics to perform pairwise statistical tests, and
as predictor variables in mixed effects linear models.

Fixation Proportions. To understand how participants in-
teracted with the call graph, we calculated the proportion
of time that they spent fixating on the following code cat-
egories: target method, call graph methods, non-call graph
methods, and non methods. We used these fixation proportions
to indicate whether programmers use call relationships (i.e.
edges of the call graph) as meaningful avenues for potentially
relevant information. The extent to which programmers’ visual
attention adheres to methods in the call graph can indicate
whether the call graph is a significant underlying cognitive
tool for programmers (e.g., for theories such as information
foraging). We define fixation proportion as the sum of all
participants’ fixation durations for a code category divided by
the sum of all fixation durations.

Call Graph Scan Paths. Using method annotations for
each fixation, we calculated participants’ scan paths with
respect to call graphs as successive fixations in the same call
graph. This also provided an indication whether participants
traversed edges defined by the call graph, or “created” their
own edges. We also considered programmers’ visual strategies
by calculating the time participants spent fixating on each
node, and the number of times an edge was traversed. Figure 1
presents a visualization of this mapping.
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Fig. 1: A visualization of one participant’s scan path mapped
onto a call graph. Colored edges and nodes are visited by
the participant, while gray edges and nodes are not. Darker
shades represent greater total fixation duration for nodes, and
a greater number of total traversals for edges. Blue arrows
represent edges in the call graph. Purple arrows represent
edges “created” by participants that reverse the direction of
call graph edges, while red arrows represent created edges
that are not part of the call graph.

Depth. We calculated how “deep” into the call graph
participants looked, meaning how many calls away from the
target method they visited. In reporting our findings on depth,
we include mean (u) and the 90th percentile (Py) to illustrate
average and extreme behavior, respectively. For pairwise t-
tests, we report the t-statistic (), p-value (p), and Cohen’s
d effect size (d). For cases when we ran multiple ¢-tests, we
report Bonferroni corrected p-values (q) instead of uncorrected
p-values (p). We denote statistics for Study 1, Study 2, and
the combined dataset with subscripts 1, 2, and c, respectively.

E. Call Graph Coverage Metrics

To quantify participants’ traversal of call graphs, we calcu-
lated the following metrics:

Maximum Depth. We define maximum depth as the max-
imum depth that a participant visited in a given call graph.
We defined a method as visifed by participants if they fixated
upon it at least once.

Node Coverage. We define node coverage as the number
of nodes in a call graph that participants visited at least once.

Edge Coverage. We define edge coverage as the number
of edges in a call graph that participants traversed at least
once. A traversal of an edge between two nodes is defined as
a fixation on the first node directly followed by a fixation on
the second node, with no fixations in between.

Weighted Node Coverage. We calculated weighted node
coverage as the weighted proportion of the nodes in the call
graph that were visited at least once, where nodes more
calls away from the target method are given successively
smaller weights. We used this weighted metric because, when
using an unweighted proportion of nodes covered, participants
consistently exhibit low coverage scores on methods with
extensive call graphs. As such, unweighted coverage metrics
may become a measure of (inverse) call graph size, rather than
an informative model of call graph coverage. Furthermore,



validated by programmers’ gaze patterns (see Section IV-A),
which demonstrates how attention tends to fade for methods
further away from the target method in the graph, this weighted
measures of call graph coverage aligns with the observation
that methods far away from the target method of a call graph
(i.e. a higher depth) are less central to understanding the target
method than methods close to the target method (i.e. a lower
depth). This reflects the premise that attention spreads over the
callee and caller graph from the target method (the base node
of attention). We calculated weighted node coverage separately
for the callee and caller graphs. We use the target method node
as the base node of attention for both graphs, with a weight
of 1 (wg = 1). Each outgoing edge from a node n propagates
a weight of w,, /e, to its adjacent nodes (callees for the callee
graph, and callers for the caller graph), where w,, is the weight
of node n and e,, is the number of outgoing edges from node n.
Therefore, weighted node coverage is defined by the following
weighted arithmetic mean:
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where N is the number of nodes in the call graph, w,, is
the weight of node n. The symbol v,, = 1 if n was visited at
least once, v,, = 0 otherwise.

Weighted Edge Coverage. Similar to the definition of
weighted node coverage, we calculated weighted edge cov-
erage as the weighted proportion of the edges in the call
graph that were traversed at least once, where edges more calls
away from the target method are given successively smaller
weights. Each edge outgoing from the base node of attention
(the target method) has a weight of 1/e,,—y where e,,—¢ is the
number of outgoing edges from the target method. If a node
n has incoming edge e, each outgoing edge from node n is
propagated the weight w,/e,,, where w, is the weight of the
incoming edge e and e,, is the number of outgoing edges from
node n. Therefore, weighted edge coverage is defined by the
following weighted arithmetic mean:
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where F is the number of edges in the call graph, w, is

the weight of edge e. The symbol ¢, = 1 if e was traversed
at least once, t, = 0 otherwise.

F. Absolute Confidence Difference

To examine whether participants’ confidence in their own
summaries aligned with their actual summary quality, we
calculated the differences between their confidence scores
and summary quality scores. Formally, we define absolute
confidence difference as the absolute value of the difference
between the percentile of a participant’s confidence and the
percentile of a participant’s summary quality score. Formally,
absolute confidence difference for participant ¢ on trial j
is defined as |P(c;j) — P(si;)| where P(c;;) refers to the
percentile of participant ¢’s confidence c in their summary for

trial j relative to all other confidence ratings, and P(s;;) refers
to the percentile of participant ¢’s summary quality score s for
trial j relative to all other scores. We calculated percentiles
across all trials, and used percentiles to enable comparison
between confidence and summary quality.

G. Mixed Effects Model

To analyze the relationship between our metrics and down-
stream outcomes of summary quality and confidence, we
used mixed effects linear regression models, which allow us
to control for unobserved variation across individuals. We
included the participant as a random effect in all models,
and the study number as a random effect for models using
the combined dataset. We used summary quality, subscore
measures, and confidence as predictor variables, and report
results for node and edge coverage, weighted and unweighted.
We performed modeling separately for the callee graph and the
caller graph, and applied Bonferroni correction to account for
multiple comparisons and report corrected p-values (g) with
the regression coefficients.

Standardizing model coefficients can skew the results of
mixed effects regression, so at the cost of interpretability, we
do not standardize model coefficients. Thus, only the sign
(positive or negative) of the coefficients reported should be
meaningfully interpreted, not their relative magnitudes.

IV. RESULTS

In this section, we present the results of applying these call
graph analysis techniques to the datasets from Study 1 and
Study 2.

A. RQI: Call Graph Interaction

To examine whether the call graph is a relevant mechanism
for understanding code comprehension, we extracted trends in
how participants’ gaze patterns covered the call graph of the
target method they were summarizing. We tested the propor-
tion of time that participants spent examining the call graph
and how deep into the call graph they searched. To determine
the proportion of time that participants spent examining the
call graph, we calculated the fixation proportions for the target
method, call graph methods (both callee and caller), non-call
graph methods, and non methods.

TABLE II: Proportion of time participants fixated on the target
method, call graph methods, non-call graph methods, and non
methods for Study 1, Study 2, and the combined dataset.

Study
Study 1
Study 2
Combined

Target Method
0.6675

Call Graph Methods
0.1371

Non-Call Graph Methods
0.1313

Non Methods
0.0641

0.5786
0.6189

0.2026
0.1729

0.1679
0.1513

0.0508
0.0568

As shown in Table II, participants spent the most time
fixating on the target method (61.89% of total fixation duration
time). Call graph methods represented the second highest
proportion of total fixation duration time (17.29%), which
is similar to the proportion of total fixation durations spent
on non-call graph methods (15.13%). Initially, this evidence
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Fig. 2: Proportion of participants that fixated at least once at
each depth level of the (a) callee graph and (b) caller graph.
Depth 0 is excluded since all participants looked at the target
method, so the proportion is trivially 1.

might suggest that participants did not preferentially inter-
act with call graph methods. However, call graph methods
comprised, on average, approximately 1.57% of all methods
in each project. If the call graph were irrelevant, we would
expect the proportion of time spent on call graph methods to
be lower than that of non-call graph methods. Additionally, the
target method is a member of its own call graph, so 79.2%
of the total fixation duration can be mapped onto the call
graph. Therefore, these results align with our hypothesis that
programmers do preferentially look to the call graph as a tool
for comprehending methods in context. These habits of human
programmers affirm that the call graph might provide helpful
context for code summarization agents as well.

We also analyzed how “deep” into the call graph program-
mers traversed, which can signal where in the call graph
programmers find relevant information [13]. We report the av-
erage (u) and 90th percentile (Pyg) of participants’ maximum
fixation depths in Table III. Prior literature has assumed that
most information programmers need to comprehend a function
is within two calls of that function [13]. Our results support
this assumption, as participants did not visit methods more
than two calls away from the target method in 93.9% of trials
for the callee graph and 86.0% of trials for the caller graph.
Interestingly, participants looked farther than this “two calls”

assumption for the caller graph more than twice as much
(14.0%) compared to the callee graph (6.1%). This pattern
was reflected for maximum depth as well, where participants
tended to fixate at a greater maximum depth for the caller
graph (1 = 1.077, Pyo = 3.0) compared to the callee graph
(n = 0.935, Pyy = 2.0). This difference, driven by participants
in Study 2, suggests that programmers searching for relevant
information may look further into the methods that call the
target method (callers), as opposed to the methods that are
called by the target method (callees). For automated code
summarization, these trends indicate the extent of the caller
and callee graphs that may be helpful to provide to an agent.

TABLE III: Maximum depth of the call graph fixated on at
least once for Study 1, Study 2, and the combined dataset and
reported separately for callee and caller graphs.

Callee Depth Caller Depth
Study Mean | 90°" Percentile | Mean | 90" Percentile
Study 1 0.795 2 | 0.767 2
Study 2 1.095 2 1.422 4
Combined | 0.937 2 | 1.080 3

We further examined this difference by looking at the
proportion of participants who fixated at least once at each
depth. We report these distributions for the callee graph and
caller graphs in Figure 2.

While participants viewed progressively fewer methods at
greater depths for both the caller and callee graphs, partic-
ipants traversed deeper, on average, into the caller graph.
Applying t-tests confirmed that this difference was statistically
significant for both the maximum depth (¢ = 2.206,p <

0.05,d = 0.125) and the average depth (t = 2.988,p <
0.01,d = 0.170) of the combined dataset. These results

suggest that human programmers may search further into the
caller graph than into the callee graph to find information
when summarizing code. This suggests that code in the callee
graph diminishes in utility for human programmers faster than
that in the caller graph. Callee graph methods are likely to
contain implementation details of methods called by the target
method. By contrast, caller graph methods are likely to contain
examples of the target method being used, and the context in
which the target method (or its callers) are called.

Finally, we analyzed how much of the callee and caller
graphs participants covered using the metrics of node cov-
erage, weighted node coverage, edge coverage, and weighted
edge coverage. As seen in Table IV, we find no strong evidence
of a difference between callee and caller graphs in terms of
coverage trends. Applying t-tests to the combined dataset, the
difference between callee and caller graph was significant for
weighted node coverage (¢t = 2.798,¢ < 0.05,d = 0.159),
indicating that participants, on average, covered a greater
weighted proportion of methods in the caller graph than in
the callee graph. Participants may cover a similar number and
proportion of methods in both the callee and caller graphs,
but their coverage may tend to occur at greater depths for the
caller graph.



TABLE 1IV: Callee and Caller Graph Coverage. Mean values for node coverage, weighted node coverage, edge coverage, and
weighted edge coverage for both callee and caller graphs across both studies and the combined dataset.

Node Coverage | Weighted Node Coverage | Edge Coverage | Weighted Edge Coverage
Study Callee | Caller | Callee Caller | Callee | Caller | Callee Caller
Study 1 2.082 1.953 | 0.468 0411 0.736 | 0.584 | 0.133 0.129
Study 2 2.629 | 3.039 | 0.512 0.509 1.155 1.189 | 0.189 0.223
Combined | 2.342 | 2472 | 0.489 0458 | 0935 | 0.873 | 0.160 0.174

TABLE V: Call Graph Coverage and Summary Quality. Results of mixed effects linear regressions with summary score as
the outcome variable. We modeled each predictor separately, and report the resulting coefficients and statistical significance.

Graph | Study Node Coverage | Weighted Node Coverage | Edge Coverage | Weighted Edge Coverage
Study 1 0.001 -1.051 -0.024 -0.365
Caller | Study 2 0.006 -0.572 -0.055 -0.678
Combined 0.010 -0.794 -0.030 -0.497
Study 1 *##%.0.249 -1.405 *%.0.335 -0.566
Callee | Study 2 -0.137 -1.570 -0.242 -1.142
Combined *##%.0.183 *-1.396 *%.0.269 -0.760

*q < 0.05 x x ¢ < 0.01, * x xqg < 0.001.

Participants preferentially fixated on methods from the call
graph, where 61.89% of fixations were spent on the target
method and 17.29% on call graph methods for a total of
79.2%. Participants traversed deeper into the caller graph
than the callee graph on average (p < 0.01), and at the
maximum (p < 0.05).

B. RQ2: Call Graphs and Summary Quality

Next, we tested whether increased call graph coverage (as
defined by the aforementioned metrics) is associated with a
significant difference in summary quality. For this purpose,
we used mixed effects linear regression modeling.

Callee Graph Coverage and Summary Quality. To ex-
amine how callee graph coverage relates to summary quality,
we used multiple measures of callee graph coverage: weighted
node coverage, weighted edge coverage, node coverage, and
edge coverage. We included both weighted and unweighted
metrics to test whether our results were consistent despite
possible variance in call graph size. More broadly, node
coverage indicates how much of the call graph was covered,
while edge coverage indicates whether participants traversed
call relations defined within the graphs, or “created” their own
edges in traversing the call graph.

Results are reported in Table V, but we found that increased
coverage of the callee graph was significantly negatively
associated with summary quality. Specifically, in Study 1 and
the combined dataset, weighted node coverage (q¢. < 0.001)
and edge coverage (q1 < 0.01, ¢. < 0.01) significantly
predicted lower summary quality scores. Node coverage sig-
nificantly predicted lower quality scores in the combined
dataset (g. < 0.001), whereas weighted edge coverage did
not significantly predict summary quality. These unexpected
results do not align with our hypotheses, but may suggest that
information foraging techniques that focus on the callee graph
may be ineffective. The code found in the callee graph may

be less informative than alternate sources of information (e.g.,
the target method, similar methods, or project context).

Callee Graph and Summary Subscores. We also exam-
ined the relationship between callee graph coverage metrics
and each subscore (accuracy, conciseness, clarity, and com-
pleteness). We expect the effects on individual subscores to be
weaker than the effects on total scores, so here we analyzed
the combined dataset for increased statistical power and report
results in Table VI.

We found evidence suggesting that increased call graph
coverage had no significant effect on completeness, but signif-
icant negative effects on conciseness and clarity. Specifically,
we found that node coverage was significantly negatively
associated with clarity (g. < 0.05), and weighted edge cov-
erage was significantly negatively associated with conciseness
(gc < 0.05). We also found that edge coverage had negative
effects on both conciseness (¢. < 0.01) and clarity (¢, <
0.001). These results suggest that greater coverage of the callee
graph is associated with less concise and clear summaries.
These results may provide insight into the negative relation-
ship between callee graph coverage and summary quality.
Moreover, callee graph coverage does not affect completeness,
which reasonably suggests that programmers who thoroughly
investigate the call graph will be thorough in their summary.

Furthermore, we found that the effects do not uniformly im-
pact the subscores. Consider the linear regression coefficients
for edge coverage as an example. Completeness demonstrates
a mellow downward slope (5 = —0.011), but the subscores
of conciseness (8 = 0.094) and clarity (8 = 0.088) were
more steeply influenced by edge coverage. This suggests that
higher edge coverage within the callee graph is associated
with stronger detrimental effects on conciseness and clarity
compared to completeness and accuracy.

Caller Graph Coverage and Summary Quality.

Next, we examined whether traversing the caller graph had
a different influence on summary quality compared to the



TABLE VI: Callee Graph Coverage and Summary Quality Subscores. Results of mixed effects linear regressions with each
subscore (accuracy, conciseness, completeness, clarity) as the outcome variable. We modeled each predictor separately, and
report the resulting coefficients and statistical significance.

Subscore Node Coverage | Weighted Node Coverage | Edge Coverage | Weighted Edge Coverage
Accuracy -0.047 -0.340 -0.068 -0.179
Conciseness -0.050 -0.436 *%-0.094 *.0.428
Completeness -0.029 -0.259 -0.011 0.078
Clarity *-0.052 -0.326 *%-0.088 -0.197
*q < 0.05 * x g < 0.01, x x xg < 0.001.
Wstudyl [l Study2 [l Combined ingly, we find variations between Study 1 and Study 2 with
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Fig. 3: Distribution of average position of fixations on code
categories during each trial.

callee graph. Results are reported in Table V, but we found
no significant correlations between metrics for caller graph
coverage and summary quality. These findings support the idea
that traversing the callee graph has a much stronger negative
influence on summary quality. One possible explanation is that
the callee graph is more likely to contain granular information
that explains only a small portion of the target method, while
the caller graph contains contextual examples of how the target
method is used. Alternatively, programmers may perceive the
callee graph as more useful than the caller graph if they are
struggling to understand the target method.

To test these two possibilities, we conducted a follow-up
analysis examining the relative order in which participants
fixated on the call graph. If turning to the callee graph is
a reaction to confusion (as opposed to the cause), we would
expect to see callee graph fixations occur later in the trial.
To this end, we calculated the average positions of fixations
relative to each trial for each code category (e.g., callee graph
methods, target method). We define the position of a fixation
as fprev/ firiat Where fp.e, refers to the total duration of
fixations occurring previously, and f;.;q; refers to the total
fixation duration of the trial. We find little evidence based on
the combined dataset suggesting that fixations on the callee
graph occur later in the trial. Instead, the distributions for all
categories center around 0.5, as shown in Figure 3. Interest-

respect to caller graph methods, suggesting that participants in
Study 2 examined caller graph methods later during the trials,
on average. Nonetheless, our results suggest that callee graph
coverage may not be a reaction to participants’ confusion. If
callee graph coverage does hinder code comprehension and
result in lower quality summaries, programmers may wish
to err away from the callee graph while writing summaries.
Additionally, in the context of automated code summarization,
researchers may also have reason to err away from training
agents to rely heavily on callee graph context.

Higher callee graph coverage was significantly corre-
lated with decreases in summary quality, as measured
by weighted and unweighted metrics of node and edge
coverage. Higher caller graph coverage had no significant
effect on summary quality.

C. RQ3: Call Graphs and Confidence

To understand how call graph coverage is related to par-

ticipants’ confidence in the quality of their summaries, we
analyzed the relationships between call graph coverage and

both confidence and absolute confidence difference. By ex-
amining programmers’ confidence (confidence) and the “ac-
curacy” of this confidence (absolute confidence difference),
we can assess how programmers’ strategies for traversing
the call graph influence their self-estimation. Informally, if
examining the caller graph leads programmers to overestimate
their understanding, programmers may contribute documen-
tation that is detrimental or counterproductive. Alternatively,
if certain strategies lead programmers to accurately assess
their summary quality, they may be more likely to consult
outside resources when necessary. Here we used mixed effects
modeling again, but with participants’ own confidence ratings
as our outcome variable.

Callee Graph Coverage. First, we tested how callee graph
metrics predict confidence with a mixed effects regression
model. We report results in Table VII, but found that in-
creased coverage of the callee graph was significantly neg-
atively associated with summary confidence. These results
were consistent across both studies, and across measures of
call graph coverage. We found that decreased confidence was
significantly predicted by increased node coverage (q; < 0.01,
ge < 0.01), weighted node coverage (¢g1 < 0.05, g2 < 0.01,
ge < 0.001), and weighted edge coverage (q. < 0.05). Edge
coverage significantly predicted decreased confidence in Study



TABLE VII: Call Graph Coverage and Confidence. Results of mixed effects linear regressions with confidence as the outcome
variable. We modeled each predictor separately, and report the resulting coefficients and statistical significance.

Graph | Study Node Coverage | Weighted Node Coverage | Edge Coverage | Weighted Edge Coverage
Study 1 -0.041 *%-(.780 -0.075 -0.464
Caller | Study 2 -0.035 -0.487 -0.075 -0.339
Combined -0.038 *%%.0.641 -0.076 *.0.402
Study 1 *%.0.103 *.0.890 *4%.0.204 -0.490
Callee | Study 2 -0.072 **-1.056 -0.090 -0.568
Combined *%-0.087 *#%.0.961 *%%.0.136 *.0.521

*q < 0.05 * x g < 0.01, * * xq < 0.001.

TABLE VIII: Call Graph Coverage and Absolute Confidence Difference. Results of mixed effects linear regressions with
absolute confidence difference as the outcome variable and node coverage, weighted node coverage, edge coverage, and
weighted edge coverage of the caller graph as predictors. Each predictor is modeled separately, and its resulting coefficient

and p value are reported.

Graph | Study Node Coverage | Weighted Node Coverage | Edge Coverage | Weighted Edge Coverage
Study 1 -1.055 -3.762 -0.899 -1.303
Caller Study 2 -1.081 -21.298 *-4.149 -15.761
Combined -1.103 -11.158 -2.670 -7.493
Study 1 -1.311 8.654 -1.386 7.420
Callee | Study 2 -0.384 -8.558 -0.289 0.172
Combined -0.877 0.156 -0.770 3.620

*q < 0.00 % x g < 0.01, * % xq < 0.001.

1 (g1 < 0.001) and the combined dataset (g. < 0.001), but not
Study 2. These results present strong evidence suggesting that
greater coverage of the callee graph is associated with lower
confidence in the resulting summary. perhaps due to low-level
implementation details present in the callee graph.

Caller Graph Coverage. Next, we examined how caller
graph metrics predict confidence. We report results for re-
gressions in Table VII, and found in the combined dataset
that lower confidence was significantly predicted by greater
weighted edge coverage (g. < 0.01) of the caller graph.
Greater weighted node coverage significantly predicted lower
confidence in Study 1 (¢; < 0.01) and the combined dataset
(gc < 0.001). Interestingly, we found evidence suggesting
that the unweighted measures of edge and node coverage
were significantly associated with a difference in confidence.
This difference between weighted and un-weighted metrics
perhaps suggests that the proportion of the caller graph that
programmers traverse may have an influence on programmers’
confidence, where a higher amount of coverage is again
associated with lower confidence. We next analyze whether
this decrease in confidence is justified by accounting for the
quality of participants’ summaries.

Callee Graph and Absolute Confidence Difference. To
further investigate whether the association with low confidence
is due to better self-assessment, we analyzed how callee
graph coverage predicts absolute confidence difference. We
report results for regressions in Table VIII, but found no
association between absolute confidence difference and callee
graph coverage metrics. With neither a positive nor a neg-
ative association between callee graph coverage metrics and

absolute confidence difference, we did not find evidence to
suggest that programmers are more or less accurate in their

self-estimation when traversing the callee graph for contextual
information. Therefore, programmers’ decreased confidence is
likely attributable to the lower quality of their summaries,
rather than more accurate self-estimation.

Caller Graph and Absolute Confidence Difference. Next,
we analyzed how caller graph metrics predict absolute con-
fidence difference. We report results for regressions in Ta-
ble VIII, but found evidence to suggest that edge coverage in
the caller graph may be associated with lower absolute confi-
dence differences (e.g., better self-estimation). Specifically, in
Study 2, lower absolute confidence difference was associated
with greater edge coverage (g2 < 0.01). These results were not
replicated between the two studies, but perhaps suggest that
programmers may have a more accurate self-estimation of their
summary quality when they traverse edges of the caller graph.
We are hesitant to draw strong conclusions, but compared to
callee graph coverage, this evidence may reasonably suggest
that programmers develop a more complete understanding of
a target method’s functionalities when traversing the caller
graph. These findings also align with our results showing no
significant negative relationship between caller graph coverage
and summary quality. Nonetheless, further research should be
conducted to confirm this effects.

Higher caller and callee graph coverage were significantly
correlated with decreases in participants’ confidence, but
the effects were more consistent for callee graph coverage
metrics. Coverage of the caller graph was significantly
correlated with better self-estimation, mostly for Study 2.




V. DISCUSSION

We next interpret our results in terms of understanding how
the call graph relates to code comprehension strategies, and
explore the implications of our findings.

Interpretation. In this study, we mapped eye-tracking data
onto the call graph to examine code comprehension in larger
projects. Contrary to our hypotheses, greater callee graph
coverage was linked to lower-quality summaries, particularly
in clarity and conciseness, which might suggest that low-
level implementation details may hinder summarization. While
caller graph coverage showed no strong association with
summary quality, a slight negative correlation hints that “less
is more” when using the call graph for context. Increased
coverage of both graphs was also associated with reduced
confidence, though only caller graph coverage appeared to
improve the accuracy of self-assessments. This might suggest
that traversing the caller graph may help programmers better
gauge their performance by enhancing task understanding.

Implications. Our results may impact automated code sum-
marization, tool design, and computer science education. First,
the data from this study may be directly used to improve auto-
mated code summarization techniques. Previous research using
deep learning has found that model performance improved
when researchers included the call graph during training [13],
and included human eye-tracking data during training [14].
Here, we mapped human eye-tracking data onto the call graph,
which may help improve automated code summarization by
encoding the nodes and edges that human developers deem
important. Our work can also provide guidance for which
call graph elements are valuable as context. First, we found
that most participants stayed within two callee calls and three
caller calls, suggesting that researchers can focus on context
within these limits. Additionally, our findings suggest that code
summarization agents might benefit from focusing on caller
context over callee context for multiple reasons. First, our
results suggest that participants traverse deeper into the caller
graph than the callee graph. Second, we found a consistent
and negative relationship between callee graph coverage and
summary quality, which was not present for the caller graph.
Third, our results indicate that caller graph coverage may
allow for better self-estimation, perhaps by providing a better
perspective on the target method’s usage.

Our results also have implications for developer tools and
education; since our findings suggest that most programmers
only look two callee calls and three caller calls away from
the target method, IDE tools can be designed to focus on
methods within this range. Developers could also build vi-
sualizations of these portions of the call graph, or make
them more prominent via pop-ups or other documentation
elements. Moreover, students could be encouraged to search
for context at these depths. Our findings also validate the
importance of the work that has been done to visualize
and describe call graphs so far [10, 11, 12], as our results
suggest that programmers meaningfully use the call graph in
their comprehension strategies. Additionally, our findings can

help guide programmers in industry and educational settings
towards both writing high quality summaries and accurately
assessing their own summary quality. Specifically, our results
suggest that when writing documentation, programmers should
potentially be wary of over-reliance on the callee graph. When
contributing code summaries, our results suggest that program-
mers should similarly be cautious about referring to the callee
graph to avoid perpetuating low quality documentation, and
may instead benefit from consulting the caller graph.

VI. THREATS TO VALIDITY

Generalizability. Since our participants were students, the
findings may not fully generalize to professional settings,
where developers may use more efficient or different strategies.
Classroom-taught approaches may also differ from industry
practices. To address this, we used two datasets and included
participants with varied experience levels. Furthermore, all
code was in Java, which may limit generalizability to other
languages. To improve robustness, the original authors selected
diverse projects [15] and designed the experiment so partici-
pants viewed multiple codebases.

Replicability. While some findings were confirmed across
both studies, others—particularly those involving sub-
scores—were only observed in the combined dataset and
lack independent replication. Validating these would require a
larger, separate study. Subjectivity in summary quality ratings
also limits replicability, though we mitigated this using prede-
fined metrics and independent ratings with conflict resolution.
Additionally, the link between confidence difference and call
graph coverage was not completely consistent across studies,
suggesting further investigation might be needed. Findings
replicated in both studies should be considered more robust
than those that were not.

VII. CONCLUSION

We integrated programmers’ eye-tracking data with function
call graphs from open source Java projects to understand
programmers’ code comprehension patterns in a larger project
context. Using graph-based metrics, we studied how program-
mers’ code comprehension strategies correlated with down-
stream code summary quality and participants’ confidence in
their summaries (to assess whether they overestimated their
summary quality). To this end, we applied our metrics to a
previously collected eye-tracking dataset, then validated the
findings on a new dataset collected for the purposes of this
study. We found that call graph coverage was significantly
correlated with decreases in summary quality and confidence,
but the effects were less pronounced for the caller graph
compared to the callee graph.
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