
Leveraging Evidence Theory to Improve Fault
Localization: An Exploratory Study

Yueke Zhang
Vanderbilt University

yueke.zhang@vanderbilt.edu

Kevin Leach
Vanderbilt University

kevin.leach@vanderbilt.edu

Yu Huang
Vanderbilt University

yu.huang@vanderbilt.edu

Abstract—Background: Fault localization in software mainte-
nance and debugging can be a costly process. Spectrum-Based
Fault Localization (SBFL) is a widely-used method for fault
localization. It assigns suspicion scores to code elements based
on tests, indicating the likelihood of defects in specific code lines.
However, the effectiveness of SBFL approaches varies depending
on the subject code.

Aims: In this paper, our aim is to present an approach that
combines multiple SBFL formulae using evidence theory.

Method: We first introduce a taxonomy of SBFL techniques.
Then, we describe how we fuse suspiciousness scores obtained
from a set of SBFL formulae. We also introduce a concept of
fuzzy windows, and describe how they can enhance localization
accuracy and how they can be tuned to further refine results.

Results: We present an empirical evaluation of our approach
using the Defects4J dataset. Our results demonstrate improve-
ments in fault localization accuracy over existing statement-level
SBFL techniques. Specifically, by fusing three SBFL methods, our
approach reduces code inspection effort by up to 34.5% with a
size-4 window and increases the hit rate for the top 10% most
suspicious lines by 27.9% using a size-7 window. Moreover, in
multi-line bug scenarios, our approach reduces code inspection
effort by up to 35.6% and achieves a maximum increase of
43.2% in the hit rate of the top 10% most suspicious lines.
Additionally, our approach outperforms state-of-the-art machine
learning-based method-level fusion approaches in terms of top
rank fault localization accuracy.

Conclusions: Our study highlights the applicability of evidence
theory in addressing fault localization as an uncertain and
ambiguous information fusion problem involving multiple SBFL
techniques. The combination of SBFL formulae using evidence
theory, along with the use of fuzzy windows, shows promise in
enhancing fault localization accuracy.

Index Terms—evidence theory, information fusion, uncertainty,
fault localization

I. INTRODUCTION

Software debugging is expensive and time-consuming as the
scale and complexity of software increases in modern software
engineering. In the United States alone, software bugs and
defects lead to billions of dollars of loss every year [1]. In
the software industry, testing and debugging takes average
costs of 48% in the software development process [2], [3]. As
software becomes more complicated, software systems also
become more difficult for humans to debug efficiently and
effectively [4]. Furthermore, the accuracy of locating bugs can

substantially affect the performance of automated bug repair
techniques [5]–[7].

Researchers have invested significant effort in creating
automated solutions to ease software debugging, especially
locating bugs, as an important first step in software main-
tenance. Spectrum-based fault localization (SBFL) [8]–[10]
is one of the most important and popular approaches, where
coverage information of program elements (e.g., line coverage)
is collected for passing and failing test cases, culminating in
a suspiciousness score that indicates the likelihood that each
element (e.g., line of code) contains a defect.

Lucia et al. [11] applied the concept of association mea-
sures with fault localization and compared 40 measures for
fault localization in terms of how suspiciousness scores are
presented. Similarly, Lo et al. [12] combined multiple SBFL
techniques and used straightforward statistical measures to
improve fault localization. More importantly, their analysis
shows that there is no best single measure for all cases
in fault localization. Other combination approaches, such as
Savant [13], Multric [14], and FLUCCS [15] use machine
learning algorithms like learning-to-rank on program spectra
or bug reports to extract features, then predict the composition
of high performance SBFL formulae.

Li et al. proposed a deep learning approach for higher
fault localization accuracy at the function level using program
features [16]. However, in these ML-based methods, extracting
features like line age and churn may be difficult to interpret,
limiting their broad applicability across all software projects.
These approaches also require significant computational re-
sources and training data, and have not shown accuracy for
fine-grained program elements. Thus in this paper, we focus
on fine-grained statement-level SBFL, but still compare our
approach with AI-based models on the method-level fault
localization to provide insights for the community on two
different lines of approaches.

In general, fault localization approaches are based on heuris-
tics, each of which emphasizes different aspects of programs
and test cases. As a result, each method entails some degree
of uncertainty — there does not exist a best solution, and
different methods can perform better in different scenarios,
as demonstrated by Lucia et al. [11]. Moreover, uncertainty
is inevitable and inherent in software engineering, both in
planning and enacting tests [17]. The practical constraints of
finite test suites and coverable program elements introduce978-1-6654-5223-6/23/$31.00 ©2023 IEEE



a degree of uncertainty for whether all defects have been
detected.

Meanwhile, existing work in evidence theory (also referred
to as Dempster-Shafer Theory) has been used to fuse in-
formation to make robust decisions by combining evidence
or observations from multiple sources of information or ev-
idence [18], [19]. Such approaches are applied in scenarios
where each source of evidence about some proposition is
imperfect — that no one source is a perfect reflection of all
information, but taken in aggregate, all sources provide a more
robust view of evidence. Following this insight, we can treat
results from different FL formulae as multiple independent
uncertain sources of information about which elements of the
program are most suspicious. That is, we can view an FL
formula as providing a single source of evidence about the
proposition that a particular program element is suspicious
or defective. Thus, we can apply evidence theory to combine
output from multiple disparate FL formulae that hold close or
conflicting views over which program elements are suspicious.
We hypothesize that this notion can help to improve the overall
quality of predicted suspiciousness scores associated with each
program element.

In addition, we can also consider that individual FL formu-
lae are ambiguous in identifying specific suspicious program
elements — for example, that an FL formulae that identifies
one line as suspicious may report nearby lines as suspicious as
well. From this insight, we develop a notion of fuzzy informa-
tion fusion over suspicious program elements by smoothing
suspiciousness over multiple nearby elements. Fuzzy fusion
remains underutilized in the field of Software Engineering.
Existing work primarily focuses on its application in Usage-
Based Reading to enhance the effectiveness of reading soft-
ware documentation [20]. However, we note that fuzzy fusion
has found wider application in other computing domains.
For example, fuzzy fusion has been used to reduce semantic
ambiguity in Natural Language Processing [21], to detect
phishing attacks in security research [22], and to enhance
template matching [23].

In this paper, we present an approach to fuse together
multiple fault localization techniques using evidence theory.
We leverage the insight that SBFL techniques can be treated
as imperfect sources of information about defective lines of
code or program elements. Multiple uncertain and ambiguous
sources of SBFL information can be combined naturally using
extant evidence theory fusion techniques. We assume (1) Each
SBFL approach is reasonable (i.e., not a random guess) and
(2) Each SBFL score for a line of code is ambiguous, within a
“window” of error. Defects on line X may indicate high SBFL
scores within lines X ± ϵ, which we call fuzzy windows. By
applying evidence theory along with imperfect SBFL scores,
our approach can improve fault localization by combining
findings from multiple SBFL formulae. We apply our approach
on the widely-used Defects4J dataset [24]. We also include 9
indicative SBFL formulae in the study and explored the effect
of fuzzy window sizes on the localization accuracy.

Our results show that directly fusing the predictions made

by diverse SBFL formulae improves the FL accuracy by 31.8%
on average. By modeling only the ambiguity of suspiciousness
with fuzzy windows of program elements, the FL accuracy
increases by 34.5%. Specifically, the FL accuracy of multi-line
bug scenarios can be improved by as much as 35.6%. In addi-
tion, our method locates 43.2% more bugs than average among
the top 10% most suspicious lines. Though our approach
focuses on statement-level FL, we still compare our approach
against the state-of-the-art ML-based fusion method, Multric,
on method-level FL. Our approach surpasses Multric on the
accuracy of the top ranked buggy methods. Furthermore,
our approach does not introduce additional testing load, but
requires only linear mathematical computation associated with
each SBFL formulae considered.

The main contributions of this paper are as follows:
• We propose a new categorization of traditional SBFL meth-

ods by modeling them as individual sources of evidence,
each of which develops suspiciousness scores according
to different program characteristics. This categorization
distinguishes the suspiciousness evaluation corresponding
to specific test traces of a FL task and allows more efficient
information fusion.

• We propose a fuzzy window approach to model the am-
biguity of suspiciousness evaluation in each single SBFL
method, and demonstrate that the smoothed suspiciousness
measure improves FL accuracy.

• We provide a framework to model the fault localization
process as a fusion task. Our evaluation presents the
efficiency of such fusion-based approaches for FL tasks.

• We present a systematic evaluation of our framework
and demonstrate the feasibility and benefits of modeling
the uncertainty of FL using evidence theory. This work
can lead to further exploration and improvement in other
automated software engineering processes.

• We openly share our dataset and evaluation scripts to
encourage further research in this area.1.

II. BACKGROUND AND RELATED WORK

We discuss preliminaries to understand our work and place
it in context with existing research. Specifically, we discuss (1)
evidence theory as a basis for quantifying evidence and fusing
information sources, (2) spectrum-based fault localization,
(3) research that combines fault localization techniques, and
(4) fault localization for defects that span multiple lines or
program elements.

A. Evidence Theory, Uncertainty, and Fusion

Evidence theory, also referred to as theory of belief functions
or Dempster-Shafer theory (DS-theory or DST), along with
fuzzy set theory, are essential in fuzzy information fusion
tasks [18]. In particular, we use Dempster’s Combination Rule
(DCR), to aggregate the suspiciousness measured by different
spectrum fault localization techniques. Evidence theory was
proposed by Dempster and later developed by Shafer [25],

1https://anonymous.4open.science/r/ESEM-fuzzy-FL-70CA



[26], and provides a formal mathematical approach to in-
terpreting and combining distinct sources of evidence that
support or reject various propositions. Informally, following
foundational probability theory, evidence theory considers a
set of propositions and a list of probabilities from 0 to
1 that capture each source’s confidence in supporting each
proposition. Thus, if each source consists of a list of such
probabilities, then DCR allows combining these lists together
to form a more robust representation of support for each propo-
sition. If multiple sources agree on supporting a particular
proposition, then fusing those sources will increase support for
that proposition and reduce support for others. In this paper,
we treat suspiciousness scores produced by individual fault
localization methods to reflect the confidence each formula
has that a given program element (i.e., line) is suspicious or
defective.

We say that such propositions are uncertain in that they are
imperfect and may differ between sources of information —
for example, two different fault localization techniques might
each report that different lines are more suspicious than others,
even if only one line is truly defective. Evidence theory has
been applied to computing to minimize ambiguities in specific
tasks [27]. Uncertain fusion models have been used to resolve
ambiguous languages in NLP area, to detect phishing attacks,
and to improve template matching [21]–[23], [28]. It also has
enjoyed wide application in computer vision, recommendation
systems, and sentiment analysis [29]–[32]. In addition, it has
been applied in risk evaluation, supply chain management, and
commercial security in finance and management areas [33]–
[35]. Evidence theory is a mature and well-tested set of
techniques — however, it has not yet been adopted by the
software engineering community. In our work, we apply to
fault localization to improve software maintenance.

1) Formal Basis of Evidence Theory: Evidence theory
develops support for a set of propositions — in our context,
each line of code has an associated proposition that it in
fact includes a bug or not. These propositions, referred to
as a frame of discernment, are mutually exclusive (e.g., a
line of code can either include a bug or not) and collectively
exhaustive. We take the frame of discernment, called Ω, to be
a finite set, Ω = Θ1,Θ2,Θ3...Θn, consisting of n mutually
exclusive propositions (e.g., n = 2 for FL, each line of code
has a bug or not).

Next, consider a function, m(Ω), called the Basic Probabil-
ity Assignment (BPA), sometimes referred to as a basic belief
assignment or mass function, on 2n, the power set of Ω.

The BPA function m must satisfy:

m(ϕ) = 0 (1)

where ϕ is an empty set∑
Θi⊂2Ω

m(Θi) = 1 (2)

In this arrangement, m(X) measures the support that is
directly assigned to proposition X ⊂ Ω. Because m(X) is

between 0 and 1, it can capture varying degrees of support
as a probability for a particular proposition. In this way, it
also means that uncertainty among propositions is captured in
m(Ω).

Evidence theory provides an approach for fusing sources
to reduce uncertainty. In this context, fusing two sources
consists of combining m1 and m2, the BPAs for each input
source. Fusing these two masses results in redistribution of
mass among the propositions such that more belief is applied
to propositions that the sources agree upon. In particular,
Dempster’s Combination Rule is denoted by m = m1 ⊕ m2

and computed in the following manner:

m(ϕ) = 0 (3)

m1,2(α) =
1

1−K

∑
β∩γ=A̸=ϕ

m1(β)m2(γ) (4)

K =
∑

β∩γ=ϕ

m1(β)m2(γ) (5)

where β and γ are propostions of BPA m1 and m2 called the
focal elements and K is the conflict coefficients. When focal
elements in two BPAs do not overlap, K measures the degree
of uncertainty between two belief functions. To combine n
BPAs:

m = m1 ⊕m2 ⊕m3...⊕mn (6)

DCR’s mathematical properties allow the combinations of
the beliefs from multiple sources. There are other combination
rules available with different conflict coefficients that are
useful in different contexts. For example, Yager, Dubois and
Murphy also proposed a combination rule [36]–[38]. We
use DCR because it is commutative and associative, which
facilitates rapid and parallel computation [23].

In this paper, we treat SBFL techniques as individual
sources of information, where each line’s suspiciousness is a
proposition, and each line’s suspiciousness score si contributes
to a Dempster mass m(Linei). We use DCR to fuse together
the suspiciousnes scores reported by SBFL techniques to
improve overall fault localization.

B. Spectrum based fault localization

Spectrum-Based Fault Localization (SBFL) is one of the
most popular and widely-researched fault localization meth-
ods [8] in part because of its relatively low execution time
and reasonably high accuracy. SBFL uses passing and failing
test cases over elements in a given code snippet (typically
individual lines of code), then computes a suspiciousness
score for each element. The suspiciousness score indicates the
likelihood that the program element in question is responsible
for defective behavior (typically, whether the line is implicated
by the failing test cases). Finally, SBFL ranks all elements
based on the score. Many suspiciousness evaluation formulae
have also been proposed, including ochiai and Tarantula
among others [39]–[41].

SBFL suspiciousness formulae vary in how they treat passed
and failed test cases, whether a particular program element is



Failure-Sensitive

Combined-
Conservative

Combined-
Full-Range

SBFL Types

Defective Program

Basic Fusion
Fuse suspiciousness scores

Fuzzy Window
Redistribute suspiciousness

Rank
suspiciousness

scores

1©

2©

5©

3©

4©

Fig. 1. Fusion and fuzzy window approach. First, we begin by feeding a defective program and test cases to multiple SBFL techniques (1). Next, we feed
suspiciousness scores to our windowing and fusion approaches (2). In particular, we consider three scenarios. We consider fusing the raw suspiciousness
scores produced by each category of SBFL technique (3). We also consider a fuzzy windowing technique in which suspiciousness scores are redistributed
with nearby lines of source code in the original program for each SBFL technique (4). Finally, we combine windowed suspiciousness scores with fusion to
produce an accurate suspiciousness score that leverages multiple SBFL techniques (5). These suspiciousness scores are all ranked and returned to the user.

covered during each test case, and the number of test cases
overall. As a result, different formulae will more accurately
localize defects than others depending on the input program.

C. Combining fault localization methods

Even though many fault localization techniques have been
studied, there is no single winner than outperforms all others,
both in terms of accuracy and computation cost [42]–[44].
Therefore, researchers have studied combinations of different
methods, which may aggregate the advantages of each individ-
ual technique. Recently, Jiang et al. proposed a combination
of SBFL and statistical debugging SD, which achieves a
high improvement compared to the original SD method [45].
Other attempts have fused SBFL with mutation-based fault
localization and slice-hitting-sets [46], [47].

In addition, combinations of SBFL have been widely-
researched as well. Lucia has examined 40 different SBFL
equations and their performance both on single-line bugs and
multi-line bugs [11]. Lo et al. adapted all 40 equations and
combined half of them based on ranking similarity [12]. Xuan
et al. employed a learning-to-rank training on 25 suspicious-
ness evaluations and combined them based on weight [14].
In this paper, we develop a new approach to fusing SBFL
techniques to improve overall fault localization accuracy.

D. Localizing multiple faults

There have been many approaches on fault localization [4],
[8], [48], however they focus on single-fault programs. Bug
interaction is common in programs, and localizing several bugs
usually leads to more complexity, computation, and effort [49].
Existing approaches include one-bug-at-a-time (OBA), paral-
lel, and multi-bug-at-a-time (MBA) [50]–[52]. Among these
techniques, OBA is popular as it is fairly direct: the test suite
is executed until a single bug is found. SBFL has been used
in OBA [53], [54] as well. In this paper, we explore how
SBFL techniques perform on a dataset of Java code, including
multiple defects at a time.

III. APPROACH

In this section, we introduce our framework for exploring
and modeling uncertainty of fault localization as a fuzzy infor-
mation fusion problem. Figure 1 illustrates our approach. First,
we taxonomize families of Spectrum-Based Fault Localization

(SBFL) suspiciousness techniques according to what program
information they emphasize and benefit from. Second, we use
these SBFL techniques to report suspiciousness scores for a
given defective program. Third, we develop and apply a fuzzy
window technique in which we redistribute suspiciousness
scores associated with each line of source code to nearby lines
in the original program. Forth, we fuse these fuzzy window
scores together to further improve localization. Finally, we
combine fusion with our fuzzy window approach to provide
accurate fault localization. These suspiciousness scores ob-
tained from each approach are ranked so that a developer can
more efficiently locate the defect.

A. Information-based Categorization of SBFL

There are more than 40 different formulae for producing
suspiciousness scores in SBFL and there is no single best per-
former [11]. The state-of-the-art SBFL formulae vary accord-
ing to the datasets to which they are applied. Table I shows an
example of several lines of code and associated suspiciousness
scores as reported by ochiai and ample, two different SBFL
techniques. The red lines in the table indicate true bugs, but
the lines with the highest suspiciousness according to ochiai
are not buggy, and only one line is identified as buggy by
ample. In this example, ochiai fails because there is no test
case that fails specifically on lines 4 and 5. However, ample
accounts for both passed and failed test cases, resulting in
nonzero suspiciousness for lines 4 and 5. This leads us to two
insights. First, we can categorize SBFL formulae according to
the information they emphasize (e.g., how much they account
for failed test cases, passed test cases, and lines covered by
each). The SBFL taxonomy is established on the basis of
suspiciousness coverage and the range of suspicious scores
allocated. Each category is suitable for different types of code
snippets, taking into account factors such as test coverage
and fault frequency. Second, we can potentially increase fault
localization accuracy by fusing together suspiciousness scores
reported by SBFL techniques in each category. Taxonomy of
SBFL Formulae: Some research has investigated the granular-
ity of program elements used by SBFL formulae such as lines
and functions [55], [56]. We focus on the line (statement) level
for measuring suspiciousness because it is straightforward to
instrument and because it is used by many techniques [45].



These SBFL formulae require the total number of failed and
passed test cases for a code snippet, as well as the number of
failed and passed test cases that cover a specific line. In our
study, we categorize SBFL methods into three groups based
on values of suspiciousness scores and how passing and failing
test cases are reflected.
• Failure-Sensitive (FS). Only failed test cases are used in

computing a suspiciousness score for each line.
• Combined-Conservative (CC). This category conserva-

tively estimates suspiciousness considering both passing
and failing test cases for each line, and produces only a
non-negative number. This category produces a suspicious-
ness of 0 only when a line is never executed.

• Combined-Full-Rate (CFR). This category considers both
passing and failing test cases, but allows for negative
numbers when they build evidence that a line is not
suspicious.

In this paper, we also use these nine SBFLs listed in Table
Table II for exploratory analysis on the proposed evidence
theory-based approach. We categorize the 40 available SBFL
formulas into three groups and select nine formulas for this
paper based on their categories. In the Failure-Sensitive (FS)
category, our five formulas perform the best in defects4j.
However, in the Combined-Conservative (CC) and Combined-
Full-Rate (CFR) categories, there are only 2 or 3 formulas.
Hence, we evaluate all of them and select the top 2 formulas
from each category.

B. Fusion for SBFL

We model each SBFL category (cf. Section III-A) as ev-
idence for fault localization. SBFL techniques provide im-
perfect and uncertain information regarding defective lines of
code or program elements. Each SBFL source may offer a
unique set of suspiciousness scores that can be fused together.
Recall from Section II-A that we treat each SBFL technique’s
suspiciousness as an evidence theory mass function that we
can fuse with Dempster’s Combination Rule. We fuse all
sources of information by modeling each source’s uncertainty
to generate a final suspicious score for each line.

1) Normalization: The range of suspiciousness evaluations
in different SBFL can vary substantially. For example, Zoltar
generates small suspiciousness scores that are usually less than
10−5, which complicates fusing the raw data. Thus, we adjust
suspiciousness scores so they vary from 0 to 1. Function S
maps each element e to a suspiciousness score. We compute
Smax and Smin to be the highest and lowest suspiciousness
score seen among all elements for a single SBFL method. For
each program element e, the post-normalization score for a
SBFL can be calculated as

Snorm(e) =
S(e)− Smin

Smax − Smin
(7)

Once all scores are normalized, they can be fused together.
2) Selecting SBFL methods as sources of evidence: Based

on our three SBFL categories, we choose one formula from
each group for fusion. Lo et al. have pointed out some
SBFL formulae sometimes generate identical rankings for all

lines [12]. Thus, combining these methods would be inefficient
as no information would be gained by fusing them. Instead,
by selecting one formula from each of our three categories,
we avoid redundant suspiciousness rankings. The range of
non-zero suspiciousness is different between categories, which
assures the suspcisiousness computation process for code
snippets varies among formulae.

3) Uncertainty Measure: Recall that we use evidence the-
ory to represent suspiciousness scores from SBFLs as sources
of evidence that can be fused together to obtain robust fault
localization results. Doing so reduces uncertainty induced by
individual SBFLs, which has not been discussed in prior work.

The suspicious scores that different formulae assign to each
line is similar to multi-criteria information fusion [57]. We
leverage the insight that each test case for a code snippet
can be treated as a criterion for which an SBFL formula
can provide information. When different information from
SBFLs have conflicting or close outcomes, the final result is
a comparison among all SBFL formulae.

After normalizing suspicious scores, we build a Belief Prob-
ability Assignment (BPA) for each line (see Section II-A1).
Now, there are two conditions in fault localization: a line could
be either buggy or nonbuggy. In this context, our BPA function
m assigns a suspciousness score to each line that reflects the
degree to which each SBFL formula concludes the line is
buggy. We can directly use the suspiciousness score for line e
in the mass function for potentially buggy lines when the sus-
piciousness is nonzero (i.e., m(e) = S(e) = suspiciousness).

In our setup, we have three BPAs, m1, m2, and m3,
corresponding to one SBFL from each of our three categories
(see Section III-A and Table II). Next, we use the Dempster
Combination Rule to combine suspiciousness for each line.
After fusing results for each line, we compute a ranking based
on the fused suspiciousness scores.

C. Fuzzy windows for suspiciousness evaluation

SBFL is based on passing and failing test cases. Indeed, we
see many examples throughout the Defects4J dataset in which
other lines near a highly suspicious line are also marked as sus-
picious, even if those nearby lines are not actually implicated
in a failing test case. Table III shows suspiciousness scores
from Math11 in Defects4J. Column 2 shows raw suspicious
scores, where lines 3–7 have suspiciousness 0.58 even though
only line 5 is buggy. As a result, we consider localization
information to be ambiguous among multiple nearby lines.

We adopt a window-based technique: we first pick a window
size, w, and for each line in a given code snippet, we set the
suspiciousness of that line to be the average suspiciousness
of the next w and previous w lines in the code snippet. In
Table III, we show the suspiciousness scores using w = 2. As
we can see, line 5 has the highest suspiciousness, and thus
would be considered first in typical SBFL applications that
rank according to suspiciousness. We apply this fuzzy window
technique in our experiments.



TABLE I
EXAMPLE DEFECTIVE CODE AND CORRESPONDING SUSPICIOUSNESS SCORES ACCORDING TO ochiai AND ample.

Code line Ochiai Ample

1 public Weight(double[] weight) { 0.32 0.78
2 final int dim = weight.length; 0.32 0.78
3 weightMatrix = org.apache.commons.math3.linear.MatrixUtils.createRealMatrix(dim, dim); 0.32 0.78
4 for (int i = 0; i <dim; i++) { 0 0.24
5 weightMatrix.setEntry(i, i, weight[i]);}} 0 0.24

TABLE II
TAXONOMY OF POPULAR SBFL FORMULAE.

categories SBFL Formula

Failure-Sensitive (FS)

ochiai(e) =
failed(e)

totalfailed×(failed(e))+passed(e)

tarantula(e) =
failed(e)

totalfailed
failed(e)

totalfailed
+

passed(e)
totalpassed

dstar(e) =

√
failed(e)

passed(e)+totalfailed−failed(e)

zoltar(e) =
failed(e)

passed(e)+totalpassed+
1000passed(e)(totalpassed−failed(e))

failed(e)

jaccard(e) =
failed(e)

totalfailed+passed(e)

Combined-Conservative (CC) ample(e) =
∣∣∣ failed(e)
totalfailed−failed(e)

− passed(e)
totalpassed−passed(e)

∣∣∣
gp02(e) = 2× (falied(e) +

√
totalpassed− passed(e) +

√
passed(e))

Combined-Full-Rate (CFR) muse(e) = failed(e)− totalfailed∗passed(e)
totalpassed

Piatetsky Shapiro(e) = failed(e)− totalfailed× (passed(e) + failed(e))

Consider S to be a function that returns the suspicious score
for a line e. Swin(e) computes suspiciousness for e using a
fuzzy window of size w:

Swin(e) =
S(ei−w) + S(ei−w+1)...+ S(ei+w)

w
(8)

Here, i refers to the line number where e occurs — that is, we
assign Swin(e) to be the average suspiciousness of the nearby
±win lines.

For lines at the beginning or end of the program, the window
may begin or end prematurely. In this case, the window
includes w lines at the beginning or end of the snippet.

D. Fusion of fuzzy window suspiciousness

Finally, we also consider combining fuzzy windows with fu-
sion of the suspiciousness scores from three SBFL techniques
together for a given code snippet.

First, we normalize SBFL suspiciousness scores obtained
from one of each of our three categories of SBFL techniques.
As in Subsection III-B, we can use our fuzzy window suspi-
ciousness scores as Dempster mass functions (i.e., mwin(e) =
S(e) = suspiciousness). We demonstrate the efficacy of this
approach in our evaluation.

IV. EVALUATION

In this study, we aim to address these research questions:
• RQ1. Can modeling the uncertainty in FL with evidence

theory accurately and robustly localize defects?
• RQ2. Can we account for ambiguity of suspiciousness

scores produced by SBFL and improve the accuracy of
fault localization?

• RQ3. Can fusing both uncertain and ambiguous SBFL
formulae improve FL accuracy?

• RQ4. Can our fusion approach aid in the localization of
multi-line bugs?

In our experiments, we apply our framework on the widely-
used dataset for fault localization and automated program
repair, Defects4J [24], which is a collection of bug scenarios
in open source Java projects [16], [58]. Defects4J contains
six open-source projects, including Commons Math (Math),
Commons Lang (Lang), JFreeChart (Chart), Joda Time (Time),
Closure Compiler (Closure) and Mockito, which results in 395
bug scenarios, 366K line of code, and 22,224 test cases. We
also include nine individual SBFL shown in Table II, and state-
of-the-art fusion fault localizers for evaluation.
Metrics. We use Exam Score and Hit Rate Per n for defects
to evaluate the performance of each method at the line level.
Furthermore, in the method-level evaluation, we apply the Top-
n, MFR, and MAR metrics.
Exam Score. The Exam Score is a metric that ranges from 0
to 1 that represents the percentage of code that, in the worst
case, must be inspected after ranking suspiciousness scores of
a given code snippet. For example, if the Exam Score is 0.5, it
means we must inspect half of the entire codebase to localize
the buggy line. Thus, an effective SBFL technique produces
a low Exam Score because it is more likely to rate the truly
defective line as highly suspicious.
Hit Rate Per n. Hit Rate Per n (abbreviated as PERn) shows
how many faults can be found in top n percent of code
after ranking. For our experiments, we measure Hit Rate Per
n = 5, 10, 20. Given an SBFL technique, a higher Hit Rate



TABLE III
AN EXAMPLE ON FUZZY-WINDOW BASED SUSPICIOUSNESS SCORE (w=2).

Code line sus-score sus-score (fuzzy)

1 public double density(final double[] vals) throws DimensionMismatchException { 0 0.19
2 final int dim = getDimension(); 0 0.29
3 if (vals.length != dim) { 0.58 0.35
4 throw new DimensionMismatchException(vals.length, dim);} 0.58 0.46
5 return FastMath.pow(2 * FastMath.PI, -0.5 * dim) * 0.58 0.58
6 FastMath.pow(covarianceMatrixDeterminant, -0.5) * 0.58 0.46
7 getExponentTerm(vals);} 0.58 0.35
8 public double[] getStandardDeviations() { 0 0.29
9 final int dim = getDimension(); 0 0.19

is better because it means the technique can rank a higher
density of truly-defective lines as being suspicious [14], [45].
In this paper, we take the mean rank for all lines implicated
by the defect.
Top n. We apply Top n, the widely used primary metric for
evaluating method-level fault localization, to compare our ap-
proach with ML-based method-level approaches. Top n refers
to the number of successful identification of buggy methods
that are ranked among the first n using the method-level FL.
Because our approach focuses on fine-grained statement-level
FL, to allow the comparison with method-level FL approaches,
we identified the method FL by localizing the methods where
the most suspicious line of code resides.
MFR and MAR. Mean First Rank (MFR) is the average rank
of the first identified buggy method. The Mean Average Rank
(MAR) represents the average rank of all buggy methods.
Computational Resources. In our study, all experiments are
conducted on a machine with an AMD Ryzen5 4600H 3.00
GHz CPU and 6GB RAM running Ubuntu 18.04. Since the
Dempster Combination Rule is a linear formula, its contribu-
tion to computation time is negligble compared to the time
spent executing test cases, collecting coverage information,
and computing suspiciousness scores. Specifically, DCR took
0.026s to fuse three SBFL formulae for 1,000 lines.

A. RQ1: Modeling FL as a fusion task

Recall from Sections I and III that we apply evidence theory
to fault localization by treating each SBFL technique as a
source of evidence about a defect for a given snippet of code.
In RQ1, we explore whether applying evidence theory with
uncertainty can improve the accuracy of the final prediction
of bug locations. Specifically, we select one SBFL formula
from each of our three categories (Section III-A). Then, as
described in Section III-B, we use each SBFL formula to
compute suspiciousness scores for each line in each Defects4J
project. We fuse the three resulting suspiciousness scores
for each line to mitigate uncertainty. Then, based on the
fused suspiciousness scores, we compare the accuracy of fault
localization between our fusiong technique and each individual
SBFL formula using the Exam Score. Table IV shows all
20 trials covering all SBFL combinations from the three
categories of SBFL (see Section III-A). The TrialID represents
the first letter of an SBFL formula in its category as shown in
Table II. For example, Trial TAM is the trial that includes the

Fig. 2. Exam Score computed for all SBFL methods with window size w from
0–9 applied to Defects4J. min refers to the minimum (i.e., best) performance
among our 9 SBFL formulae. mean refers to the average performance among
our 9 SBFL formulae.

individual SBFLs Tarantula, Ample, Muse from each category
(i.e., those that produced the lowest exam scores).

From Table IV, our fusion approach obtains the best FL
performance when fusing with the best individual SBFLs.
However, in general, while fusion provides better FL accuracy
than average SBFL, it is not always the best compared to
every possible individual SBFL. This observation is similar
for the multi-line bug scenarios. That said, we will show in
subsequent subsections that resolving ambiguity in suspicious
scores among nearby lines can substantially improve fusion-
based SBFL (c.f. Section IV-B).

B. RQ2: Fuzzy Windows for SBFL

Following the approach described in Section III-C, we
model the ambiguity of suspiciousness evaluation for every
line of code. We apply a window of a fixed size w to the
raw suspiciousness scores computed for each code snippet
for each project. We smooth each suspiciousness score by
averaging each line’s suspiciousness score and the surrounding
+/- w lines. After smoothing the suspiciousness scores, we re-
evaluate the Hit Rate Per n.

In our experiments, we explore the effect of window size
w ranging from 0 to 9. In Figure 2, we show average Exam
Scores of overall and multi-line bug scenarios in Defects4J.
Due to similar trends between all methods, we present the



TABLE IV
WE COMPARE FL ACCURACY BETWEEN OUR FUSION-BASED METHOD (Fusion) AND INDIVIDUAL SBFL METHODS FROM THE THREE CATEGORIES.
TrialID INDICATES THE SELECTED SBFL METHODS USING THE FIRST LETTER OF EACH TECHNIQUE’S NAME. FOR EXAMPLE, TRIAL OAM SELECTS

ochiai, ample, AND muse. average REPRESENTS THE AVERAGE PERFORMANCE AMONG THE INDIVIDUAL SBFL METHODS IN EACH TRIAL. Overall
Performance REFERS TO THE AVERAGE ACCURACY ACROSS ALL BUG SCENARIOS, WHILE Multiline Performance REPRESENTS THE AVERAGE ACCURACY

IN MULTI-LINE BUG SCENARIOS.

Overall Performance Multi-Line Performance

TrialID fusion FS CC CFR average fusion FS CC CFR average

OAM 0.0999 0.0994 0.1036 0.1105 0.1045 0.1312 0.1308 0.1352 0.1462 0.1374
OAP 0.2669 0.0994 0.1036 0.3573 0.1868 0.2910 0.1308 0.1352 0.3639 0.2100
OGM 0.1270 0.0994 0.2073 0.1105 0.1391 0.1522 0.1308 0.2279 0.1462 0.1683
OGP 0.3078 0.0994 0.2073 0.3573 0.2213 0.3259 0.1308 0.2279 0.3639 0.2409
TAM 0.0978 0.0995 0.1036 0.1105 0.1045 0.1259 0.1305 0.1352 0.1462 0.1373
TAP 0.2519 0.0995 0.1036 0.3573 0.1868 0.2734 0.1305 0.1352 0.3639 0.2099
TGM 0.1206 0.0995 0.2073 0.1105 0.1391 0.1445 0.1305 0.2279 0.1462 0.1682
TGP 0.2744 0.0995 0.2073 0.3573 0.2214 0.2911 0.1305 0.2279 0.3639 0.2408
DAM 0.1041 0.1064 0.1036 0.1105 0.1068 0.1370 0.1423 0.1352 0.1462 0.1413
DAP 0.2515 0.1064 0.1036 0.3573 0.1891 0.2766 0.1423 0.1352 0.3639 0.2138
DGM 0.1263 0.1064 0.2073 0.1105 0.1414 0.1545 0.1423 0.2279 0.1462 0.1722
DGP 0.2783 0.1064 0.2073 0.3573 0.2237 0.3037 0.1423 0.2279 0.3639 0.2447
ZAM 0.1013 0.0993 0.1036 0.1105 0.1045 0.1338 0.1304 0.1352 0.1462 0.1373
ZAP 0.2727 0.0993 0.1036 0.3573 0.1867 0.2953 0.1304 0.1352 0.3639 0.2098
ZGM 0.1300 0.0993 0.2073 0.1105 0.1300 0.1568 0.1304 0.2279 0.1462 0.1682
ZGP 0.3252 0.0993 0.2073 0.3573 0.2213 0.3437 0.1304 0.2279 0.3639 0.2407
JAM 0.1036 0.1059 0.1036 0.1105 0.1067 0.1366 0.1418 0.1352 0.1462 0.1411
JAP 0.2502 0.1059 0.1036 0.3573 0.1890 0.2745 0.1418 0.1352 0.3639 0.2136
JGM 0.1256 0.1059 0.2073 0.1105 0.1412 0.1534 0.1418 0.2279 0.1462 0.1720
JGP 0.2762 0.1059 0.2073 0.3573 0.2235 0.3002 0.1418 0.2279 0.3639 0.2445

Multi-line Bug All Bug

Fig. 3. Hit Rate Per n for all SBFL methods with window size w from 0–9 applied to Defects4J.

comparison of FL accuracy between the maximum, mean, and
minimum value among 9 SBFL methods (because it represents
the best average FL performance) across different window
sizes. All the other evaluation data are available in data link.
We see that all the best fuzzy-window approaches outperform
ochiai (recall that lower is better for Exam Score). The best
overall performance is obtained with window size w = 4,
which yields a decrease of exam score by 5.5% compared
to ochiai. Furthermore, in the multi-bug dataset, using Zoltar
with window size w = 9 requires inspecting 15.7% fewer
lines of code than the best standalone SBFL.

We also present the comparison of Hit Rate Per n in
Figure 3. Each dot represents the performance of a single
SBFL formula with different window sizes. In all of the PER5,
PER10, and PER20 evaluations, our fuzzy-window approach
outperforms ochiai (recall that higher is better for PERn). In
Figure 3, the Hit Rate increases as the window size becomes
larger in multi-line bugs. The best peformance is achieved
when window size w = 9 in Zoltar, resulting in an increase in
Hit Rate of 15%, 17.2%, 8.8% for Hit rate Per5, Per10, and
Per20 compared to ochiai. In Figure 3, the highest Hit Rate
is achieved with window size w = 4 and 7 across the whole



TABLE V
COMPARISON WITH STATE-OF-THE-ART INDIVIDUAL AND ML-BASED

FUSION APPROACHES ON THE METHOD-LEVEL FL, WITH MULTI-LINE FL
PERFORMANCE GIVEN IN PARENTHESES.

FL Method Top-1 Top-3 Top-5 MFR MAR
Ochiai 80(23) 165(75) 196(96) 38(46) 43(49)
Multric 80(25) 163(81) 195(104) 38(32) 44(51)
Zoltar win9 102(47) 176(93) 215(114) 76(65) 101(95)
Zoltar win4 122(60) 190(101) 226(123) 55(47) 92(92)

dataset. They outperform all single SBFL formulae in PER5,
PER10, and PER20.
C. RQ3: Fusing Uncertain and Ambiguous FL Techniques

In this section, we first apply our fuzzy-window approach
to smooth ambiguous suspiciousness scores, then fuse together
the resulting values.

We compare our combined fuzzy-window fusion approach
with the most widely-used individual SBFL formulae. In
the statement level, we present a comparison with the best
three combination-only localizers in [12] — we reproduced
their methods on Defects4J: F zero−one,overlap

CombANZ
: Computing the

average of the non-zero scores from Overlap-Based Selec-
tion with zero-one score normalization for all SBFL results.
F zero−one,bias
CombANZ

: Computing the average of non-zero scores
from Bias-Based Selection with zero-one score normalization
for all SBFL results. F zero−one,bias

CombSUM
: Computing the sum

of scores from Bias-Based Selection with zero-one score
normalization for all SBFL results.

In Table VII and Table VI, we include our two top-
performing fuzzy-window fusion approaches: ZAM win9: fu-
sion between zoltar, ample and muse with fuzzy-window
(window size=9). zoltar winn: the original zoltar with fuzzy-
window (window size=n).

As shown in Table VII, our methods substantially out-
perform individual SBFL techniques and the state-of-the-art
localizers. Across both Exam Score and Hit Rate Per n for
zoltar win4 and zoltar win7, we substantially improve fault
localization compared to individual SBFL formulae.

In Table VI, our combined fuzzy window and fusion
approach obtains even better performance on the multi-line
bug scenarios. In particular, zoltar win9 obtains a 35.6%
improvement in Exam Score and 52.2% improvement in Hit
Rate Per 5%. ZAM win9 also improves Hit Rate Per 10%
by 43.2%. These results show that our approaches outperform
state-of-the-art localization techniques.

D. Evaluation Conclusion

Our evaluation encompassed the application of 9 different
state-of-the-art SBFL formulae to the Defects4J benchmark
suite. We explored how we can use information fusion tech-
niques to combine suspiciousness scores produced by disparate
formulae to improve overall suspiciousness rankings. We
demonstrated measurable improvements in two key metrics
in statement level: (1) Exam Score and (2) Hit Rate Per
n. These metrics represent the engineering effort required to
search for actual defects in the code. Therefore, our approach

of smoothing and fusing suspiciousness scores substantially
enhances fault localization.

Furthermore, we also provide the comparison against the
state of art ML-based method-level fusion approach (i.e.,
Multric) after adjusting our statement-level fault localization,
using 5 widely applied metrics: Top-1, Top-3, Top-5, MFR,
and MAR in Table V (see Section IV for more details on the
metrics and adjustment for comparison). Meanwhile, we also
include Ochiai in the comparison to provide an intuition on
the method-level performance of the traditional SBFL. Despite
using fewer computation resources than Multric, our method
has a better accuracy on the top ranked buggy methods (i.e.,
zoltar win9 and zoltar win4 identify more buggy methods
in the Top-1, 3, and 5 evalution.), at the cost of a reduced
accuracy on average ranks for all buggy methods (i.e., higher
MFR and MAR). Considering that previous research has
shown developers most likely only review the top 5 suspicious
methods [16], [59], a better top n performance is more likely
to assist developers in real world practice.

All of our code and data, including all fault localization and
fusion experimental results, are publicly released.

V. DISCUSSION

In this section, we discuss how our fuzzy window approach
may inspire future work in multiple fault localization. Finally,
we discuss threats to validity of our experiments.

Modeling uncertainty and ambiguity in FL. In our
approach, fusing localization information can reduce the un-
certainty in standalone SBFL formulae, and our fuzzy win-
dow method addresses ambiguity among defects in highly
suspicious areas. Our approaches outperform existing SBFL,
especially on multi-line fault localization. The improvement is
more significant when we apply both approaches together.

Fuzzy windows. Moreover, our window-based suspicious-
ness calculation represents a larger range of program element
fault evaluation that addresses ambiguity in localization. In
SBFL formulae, suspiciousness is usually computed with re-
spect to functions or lines. These suspiciousness scores depend
not only on uncertainty among SBFL formulae, but also on
ambiguity of suspiciousness among nearby lines of code.

Threats to validity. We compared multi-line and single-line
defect localization, focusing on a dataset with both types of
defects (i.e., we did not pick a dataset containing only multi-
line defects). Next, our evaluation was limited only to Java
code (i.e., the Defects4J benchmark). Moreover, we consider
only three categories of SBFL techniques, but it is possible
that there are more accurate formulae or ecologically valid
datasets not in our evaluation. It is important to consider that
different combinations may yield varying results in datasets
with diverse test coverage or fault frequency.

VI. CONCLUSION

In this paper, we present new approaches to combine
Spectrum-Based Fault Localization techniques to improve
localization accuracy. By leveraging evidence theory, we can
treat sets of suspiciousness scores produced by different SBFL



TABLE VI
EVALUATION FOR FL PERFORMANCE FOR MULTI-LINE BUG SCENARIOS AMONG INDIVIDUAL STATE-OF-THE-ART SBFL AND OUR TWO

TOP-PERFORMING FUZZY-WINDOW FUSION APPROACHES (SHOWN IN BOLD) APPLIED TO DEFECTS4J. WE ALSO LIST THE INCREASE IN PERFORMANCE
FROM OUR METHODS (SHOWN IN PARENTHESES) COMPARED TO THE AVERAGE OF THE INDIVIDUAL SBFL METHODS (SHOWN AS Average). RECALL

THAT A DECREASE IN EXAM SCORE REFLECTS AN IMPROVEMENT, WHILE AN INCREASE IN HIT RATE PER n REFLECTS AN IMPROVEMENT.

FL Method Mean Exam Per5 Per10 Per20

ochiai 0.1308 0.4551 0.5169 0.7247
tarantula 0.1305 0.4551 0.5337 0.7247
dstar2 0.1423 0.3933 0.4831 0.7079
zoltar 0.1304 0.4607 0.5281 0.7247
jaccard 0.1418 0.4045 0.4831 0.7079
ample 0.1352 0.4101 0.5393 0.7360
gp02 0.2279 0.0562 0.1966 0.5056
muse 0.1462 0.4551 0.5506 0.6854
Piatetsky Shapiro 0.3639 0.0056 0.0169 0.1573

Average 0.1721 0.3439 0.4276 0.6305

F zero−one,overlap
CombANZ

[12] 0.2172 0.0730 0.2135 0.5562

F zero−one,bias
CombANZ

[12] 0.2157 0.0787 0.2303 0.5618

F zero−one,bias
CombSUM

[12] 0.2177 0.2753 0.3652 0.5281

ZAM win9 0.1184 (30.8%) 0.4888 (42.1%) 0.6124 (43.2%) 0.7640 (21.1%)
zoltar win9 0.1103 (35.6%) 0.5235 (52.2%) 0.6059 (41.6%) 0.7882 (25%)

TABLE VII
EVALUATION OF OVERALL FL PERFORMANCE AMONG INDIVIDUAL SBFL AND TWO OF OUR TOP-PERFORMING FUZZY-WINDOW FUSION APPROACHES
(SHOWN IN BOLD) APPLIED TO DEFECTS4J. WE ALSO SHOW THE INCREASE IN PERFORMANCE OF THE PROPOSED METHODS (SHOWN IN PARENTHESIS)
COMPARED TO THE AVERAGE INDIVIDUAL SBFL METHODS (SHOWN AS Average). RECALL THAT A DECREASE IN EXAM SCORE IS AN IMPROVEMENT,

AND AN INCREASE IN PERn IS AN IMPROVEMENT.

FL Method Mean Exam Per5 Per10 Per20

ochiai 0.0994 0.6152 0.6835 0.8177
tarantula 0.0995 0.6127 0.6937 0.8177
dstar2 0.1064 0.5823 0.6608 0.8051
zoltar 0.0993 0.6177 0.6886 0.8177
jaccard 0.1059 0.5899 0.6608 0.8051
ample 0.1036 0.5671 0.6759 0.8253
gp02 0.2073 0.1063 0.2608 0.5696
muse 0.1105 0.6152 0.6962 0.7899
Piatetsky Shapiro 0.3573 0.0127 0.0380 0.1747

Average 0.1433 0.4799 0.5620 0.7136

F zero−one,overlap
CombANZ

[12] 0.1989 0.1316 0.2759 0.6051

F zero−one,bias
CombANZ

[12] 0.1963 0.1367 0.2886 0.6101

F zero−one,bias
CombSUM

[12] 0.2261 0.3139 0.3873 0.5291

zoltar win4 0.0939 (34.5%) 0.6278 (30.1%) 0.7114 (26.6%) 0.8329 (16.7%)
zoltar win7 0.0957 (33.2%) 0.6101 (27.1%) 0.719 (27.9%) 0.838 (17.4%)

techniques as different sources of evidence that can be fused
together. Doing so accounts for uncertainty between different
SBFL techniques. Moreover, we introduce a fuzzy window
approach to redistributing suspiciousness scores among nearby
lines of code. In doing so, we resolve ambiguity in localization
among nearby lines of code.

We evaluate our approach using the Defects4J dataset.
We demonstrate that fusing raw SBFL scores can result in
better localization accuracy in some situations. Next, our fuzzy
window approach can reduce the amount of code inspected by
as much as 34.5%, and furthermore provides up to a 27.9% in-
crease in reporting the top 10% buggy lines compared to ochiai
localization. Our combined fuzzy window fusion approach

achieves an improvement in Exam score and hit rate compared
to state-of-the-art fault localization work. In multi-line defect
localization, the hit rate for the top 10% of lines increases
from 55% to 61.2%, and inspected code drops from 13.1% to
11% compared to the best single methods. In the method-level
evaluation, our approach outperforms the state-of-the-art ML-
based fusion approach by 52.5% on the Top-1 accuracy. For
scenarios with a high bug frequency, a larger window size like
zoltar win9 is advisable as it can accommodate more bugs.
However, if the focus is on localizing bugs within the top
k rather than overall performance, choosing zoltar win4 is
recommended. We further explore the suitability of different
window sizes and fusion approaches for various scenarios.



REFERENCES

[1] H. Krasner, “The cost of poor software quality in the us: A 2020 report,”
Proc. Consortium Inf. Softw. QualityTM (CISQTM), 2021.

[2] A. Alaboudi and T. D. LaToza, “An exploratory study of debugging
episodes,” arXiv preprint arXiv:2105.02162, 2021.

[3] M. A. Jamil, M. Arif, N. S. A. Abubakar, and A. Ahmad, “Software
testing techniques: A literature review,” in 2016 6th international con-
ference on information and communication technology for the Muslim
world (ICT4M). IEEE, 2016, pp. 177–182.

[4] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707–740, 2016.

[5] C. Le Goues, S. Forrest, and W. Weimer, “Current challenges in
automatic software repair,” Software quality journal, vol. 21, no. 3, pp.
421–443, 2013.

[6] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in 2009 IEEE 31st Interna-
tional Conference on Software Engineering. IEEE, 2009, pp. 364–374.

[7] C. Le Goues, W. Weimer, and S. Forrest, “Representations and operators
for improving evolutionary software repair,” in Proceedings of the 14th
annual conference on Genetic and evolutionary computation, 2012, pp.
959–966.

[8] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineer-
ing, 2005, pp. 273–282.

[9] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in Testing: Academic and industrial
conference practice and research techniques-MUTATION (TAICPART-
MUTATION 2007). IEEE, 2007, pp. 89–98.

[10] ——, “Spectrum-based multiple fault localization,” in 2009 IEEE/ACM
International Conference on Automated Software Engineering. IEEE,
2009, pp. 88–99.

[11] L. Lucia, D. Lo, L. Jiang, F. Thung, and A. Budi, “Extended compre-
hensive study of association measures for fault localization,” Journal of
software: Evolution and Process, vol. 26, no. 2, pp. 172–219, 2014.

[12] D. Lo and X. Xia, “Fusion fault localizers,” in Proceedings of the 29th
ACM/IEEE international conference on Automated software engineer-
ing, 2014, pp. 127–138.

[13] T.-D. B. Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-to-rank
based fault localization approach using likely invariants,” in Proceedings
of the 25th International Symposium on Software Testing and Analysis,
2016, pp. 177–188.

[14] J. Xuan and M. Monperrus, “Learning to combine multiple ranking
metrics for fault localization,” in 2014 IEEE International Conference
on Software Maintenance and Evolution. IEEE, 2014, pp. 191–200.

[15] J. Sohn and S. Yoo, “Fluccs: Using code and change metrics to
improve fault localization,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2017, pp.
273–283.

[16] X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: Integrating multiple fault
diagnosis dimensions for deep fault localization,” in Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2019, pp. 169–180.

[17] H. Ziv, D. Richardson, and R. Klösch, “The uncertainty principle
in software engineering,” in submitted to Proceedings of the 19th
International Conference on Software Engineering (ICSE’97), 1997.

[18] R. Pelissari, M. C. Oliveira, A. J. Abackerli, S. Ben-Amor, and M. R. P.
Assumpção, “Techniques to model uncertain input data of multi-criteria
decision-making problems: a literature review,” International Transac-
tions in Operational Research, vol. 28, no. 2, pp. 523–559, 2021.

[19] Y. Zhang and Y. Huang, “Leveraging fuzzy system to reduce uncertainty
of decision making in software engineering automation,” in GECCO
2022 Workshop 11th International Workshop on Genetic Improvement.
ACM, 2022, pp. 130–140.

[20] P. S. M. dos Santos and G. H. Travassos, “On the representation and
aggregation of evidence in software engineering: A theory and belief-
based perspective,” Electronic notes in theoretical computer science, vol.
292, pp. 95–118, 2013.

[21] M. Zabihimayvan and D. Doran, “Fuzzy rough set feature selection
to enhance phishing attack detection,” in 2019 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2019, pp. 1–6.

[22] T. Rutkowski, J. Romanowski, P. Woldan, P. Staszewski, R. Nielek, and
L. Rutkowski, “A content-based recommendation system using neuro-
fuzzy approach,” in 2018 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE). IEEE, 2018, pp. 1–8.

[23] N. Napoli, K. Leach, L. Barnes, and W. Weimer, “A mapreduce
framework to improve template matching uncertainty,” 01 2016.

[24] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis, 2014, pp. 437–440.

[25] A. P. Dempster, “Upper and lower probabilities induced by a multivalued
mapping,” in Classic works of the Dempster-Shafer theory of belief
functions. Springer, 2008, pp. 57–72.

[26] G. Shafer, A mathematical theory of evidence. Princeton university
press, 1976, vol. 42.

[27] C. Kahraman, S. C. Onar, and B. Oztaysi, “Fuzzy multicriteria decision-
making: a literature review,” International journal of computational
intelligence systems, vol. 8, no. 4, pp. 637–666, 2015.

[28] N. Naik, P. Jenkins, R. Cooke, and L. Yang, “Honeypots that bite back:
A fuzzy technique for identifying and inhibiting fingerprinting attacks
on low interaction honeypots,” in 2018 IEEE International Conference
on fuzzy systems (FUZZ-IEEE). IEEE, 2018, pp. 1–8.

[29] P. Jamadi Khiabani, M. E. Basiri, and H. Rastegari, “An improved
evidence-based aggregation method for sentiment analysis,” Journal of
Information Science, vol. 46, no. 3, pp. 340–360, 2020.

[30] R. Oruche, V. Gundlapalli, A. P. Biswal, P. Calyam, M. L. Alarcon,
Y. Zhang, N. R. Bhamidipati, A. Malladi, and H. Regunath, “Evidence-
based recommender system for a covid-19 publication analytics service,”
Ieee Access, vol. 9, pp. 79 400–79 415, 2021.

[31] H. Lee and H. Kwon, “Dbf: Dynamic belief fusion for combining
multiple object detectors,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 43, no. 5, pp. 1499–1514, 2019.

[32] V. V. Baba and F. HakemZadeh, “Toward a theory of evidence based
decision making,” Management decision, 2012.

[33] X. Pan, H. Wang, and W. Chang, “A fuzzy synthetic evaluation method
for failure risk of aviation product r&d project,” in 2010 IEEE Interna-
tional Conference on Management of Innovation & Technology. IEEE,
2010, pp. 1106–1111.

[34] X. Su, S. Mahadevan, P. Xu, and Y. Deng, “Dependence assessment in
human reliability analysis using evidence theory and ahp,” Risk Analysis,
vol. 35, no. 7, pp. 1296–1316, 2015.

[35] Y. Zhang, X. Deng, D. Wei, and Y. Deng, “Assessment of e-commerce
security using ahp and evidential reasoning,” Expert Systems with
Applications, vol. 39, no. 3, pp. 3611–3623, 2012.

[36] D. Dubois and H. Prade, “Representation and combination of uncer-
tainty with belief functions and possibility measures,” Computational
intelligence, vol. 4, no. 3, pp. 244–264, 1988.

[37] C. K. Murphy, “Combining belief functions when evidence conflicts,”
Decision support systems, vol. 29, no. 1, pp. 1–9, 2000.

[38] R. R. Yager, “On the dempster-shafer framework and new combination
rules,” Information sciences, vol. 41, no. 2, pp. 93–137, 1987.

[39] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. Van Gemund, “A practical
evaluation of spectrum-based fault localization,” Journal of Systems and
Software, vol. 82, no. 11, pp. 1780–1792, 2009.

[40] T. Janssen, R. Abreu, and A. J. Van Gemund, “Zoltar: A toolset for au-
tomatic fault localization,” in 2009 IEEE/ACM International Conference
on Automated Software Engineering. IEEE, 2009, pp. 662–664.

[41] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu, “A theoretical analysis
of the risk evaluation formulas for spectrum-based fault localization,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 22, no. 4, pp. 1–40, 2013.

[42] A. Zeller, “Isolating cause-effect chains from computer programs,” ACM
SIGSOFT Software Engineering Notes, vol. 27, no. 6, pp. 1–10, 2002.

[43] M. Renieres and S. P. Reiss, “Fault localization with nearest neighbor
queries,” in 18th IEEE International Conference on Automated Software
Engineering, 2003. Proceedings. IEEE, 2003, pp. 30–39.

[44] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “Sober: statistical
model-based bug localization,” ACM SIGSOFT Software Engineering
Notes, vol. 30, no. 5, pp. 286–295, 2005.

[45] J. Jiang, R. Wang, Y. Xiong, X. Chen, and L. Zhang, “Combining
spectrum-based fault localization and statistical debugging: An empirical
study,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2019, pp. 502–514.



[46] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating & improving fault localization
techniques,” University of Washington Department of Computer Science
and Engineering, Seattle, WA, USA, Tech. Rep. UW-CSE-16-08-03,
2016.

[47] J. Tu, X. Xie, T. Y. Chen, and B. Xu, “On the analysis of spectrum based
fault localization using hitting sets,” Journal of Systems and Software,
vol. 147, pp. 106–123, 2019.

[48] Q. Wang, C. Parnin, and A. Orso, “Evaluating the usefulness of ir-based
fault localization techniques,” in Proceedings of the 2015 International
Symposium on Software Testing and Analysis, 2015, pp. 1–11.

[49] X. Xue and A. S. Namin, “How significant is the effect of fault
interactions on coverage-based fault localizations?” in 2013 ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement. IEEE, 2013, pp. 113–122.

[50] A. Zakari, S. P. Lee, R. Abreu, B. H. Ahmed, and R. A. Rasheed,
“Multiple fault localization of software programs: A systematic literature
review,” Information and Software Technology, vol. 124, p. 106312,
2020.

[51] A. Zakari and S. P. Lee, “Parallel debugging: An investigative study,”
Journal of Software: Evolution and Process, vol. 31, no. 11, p. e2178,
2019.

[52] C. Gong, Z. Zheng, Y. Zhang, Z. Zhang, and Y. Xue, “Factorising the
multiple fault localization problem: Adapting single-fault localizer to
multi-fault programs,” in 2012 19th Asia-Pacific Software Engineering
Conference, vol. 1. IEEE, 2012, pp. 729–732.

[53] V. Debroy and W. E. Wong, “Insights on fault interference for programs
with multiple bugs,” in 2009 20th International Symposium on Software
Reliability Engineering. IEEE, 2009, pp. 165–174.

[54] Y. Xiaobo, B. Liu, and W. Shihai, “An analysis on the negative effect
of multiple-faults for spectrum-based fault localization,” IEEE Access,
vol. 7, pp. 2327–2347, 2018.

[55] P. Agarwal and A. P. Agrawal, “Fault-localization techniques for soft-
ware systems: A literature review,” ACM SIGSOFT Software Engineer-
ing Notes, vol. 39, no. 5, pp. 1–8, 2014.

[56] M. Duran, X.-Y. Zhang, P. Arcaini, and F. Ishikawa, “What to blame?
on the granularity of fault localization for deep neural networks,”
in 2021 IEEE 32nd International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2021, pp. 264–275.

[57] M. Aruldoss, T. M. Lakshmi, and V. P. Venkatesan, “A survey on
multi criteria decision making methods and its applications,” American
Journal of Information Systems, vol. 1, no. 1, pp. 31–43, 2013.

[58] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus,
“Automatic repair of real bugs in java: A large-scale experiment on the
defects4j dataset,” Empirical Software Engineering, vol. 22, no. 4, pp.
1936–1964, 2017.

[59] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, 2016, pp. 165–176.


