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Function Call Graph Context Encoding for
Neural Source Code Summarization

Aakash Bansal, Zachary Eberhart, Zachary Karas, Yu Huang, and Collin McMillan

Abstract—Source code summarization is the task of writing natural language descriptions of source code. The primary use of these
descriptions is in documentation for programmers. Automatic generation of these descriptions is a high value research target due to the
time cost to programmers of writing these descriptions themselves. In recent years, a confluence of software engineering and artificial
intelligence research has made inroads into automatic source code summarization through applications of neural models of that source
code. However, an Achilles’ heel to a vast majority of approaches is that they tend to rely solely on the context provided by the source
code being summarized. But empirical studies in program comprehension are quite clear that the information needed to describe code
much more often resides in the context in the form of Function Call Graph surrounding that code. In this paper, we present a technique
for encoding this call graph context for neural models of code summarization. We implement our approach as a supplement to existing
approaches, and show statistically significant improvement over existing approaches. In a human study with 20 programmers, we show
that programmers perceive generated summaries to generally be as accurate, readable, and concise as human-written summaries.

Index Terms—automatic documentation generation, source code summarization, neural networks, context-aware models.

✦

1 INTRODUCTION

A summary of source code is a short description of that code
in natural language. Even very brief summaries e.g., “cre-
ates connection to game server” help programmers compre-
hend source code without having to read the code itself.
These summaries form the backbone of documentation for
programmers, such as the navigable HTML files generated
by JavaDocs and Doxygen [1]. The task of automatically
writing this part of documentation has become known as
source code summarization [2], and has been a holy grail of
software engineering research for decades [3], [4].

The workhorse of almost all recent research into code
summarization is the attentional encoder-decoder neural
architecture. The inspiration for using models of this archi-
tecture derives from machine translation in NLP, in which
sentences in one natural language (e.g., French) are trans-
lated into another (e.g., English). When provided sufficient
training data samples (usually well into the millions), the
encoder portion of the model learns a representation of
one language, and the decoder learns the other. The rep-
resentations are combined via an attention network or other
mechanism. Then if the encoder is provided a sentence
in one language, the decoder can be used to help predict
an output sentence in the other language. This is a tidy
solution for machine translation because the information
needed to write a sentence in one language tends to exist
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in translated sentences in other languages – the encoder
usually has access to all the information it needs to represent
the sentence for the decoder.

At a high level, almost all recent approaches to code
summarization are essentially encoder-decoder neural mod-
els in which the input to the encoder is the source code
and the output from the decoder is the natural language
description. The encoder must learn a representation of the
code suitable for the decoder to write a description. The
typical direction for research is to create ever more complex
models of the input source code via the encoder, with the
aim to learn better representations for predicting a code
summary via the decoder.

But applications of the metaphor of machine translation
only extend so far for code summarization. Empirical stud-
ies in program comprehension are quite clear that not all of
the information necessary to understand a section of source
code exists within that source code itself [5], [6], [7], [8],
[9], [10]. The implication for code summarization research
is that there is a ceiling at which even a “perfect” encoder
model could not lead to an accurate summary, because the
information needed to write that summary is not in the piece
of code being summarized.

One potential answer to this problem is also evident in
program comprehension literature: the Function Call Graph.
The nodes in this graph are the subroutines in a program.
The edges are call relationships among the subroutines
(usually directed from one function to another). Existing
empirical studies have shown that most of the information
that human programmers need to understand a function
appears within two “hops” in this graph – e.g., a function’s
caller and the caller’s callers [11]. This information forms the
context that a human needs to understand the code. A hope
for neural approaches to code summarization is to provide
the encoder with this same information, so that it can learn
to understand software more like a human would.
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Recently, Bansal et al. [12] achieved significant improve-
ments using methods from other files in the project. These
methods were randomly selected and modeled as “project
context”. This paper is an extension of that project context
paper published at ICPC 2021, except that now we elimi-
nate the random factor. In addition, we clearly define the
relationship between the query method and every method
in the context. We observe that randomly selected files and
methods in project context could improve or hinder results
based on the selection. Therefore, we chose a call graph to
define a fixed set of methods. See Table 1 and Section 2.1.

In this paper, we present an approach for encoding the
function call graph context for neural approaches to source
code summarization. Our approach is an augmentation to,
rather than a competitor to, existing techniques. Essentially
the approach we take is to 1) extract all functions within
two hops of the given subroutine in the call graph, 2)
create vectorized representations of these functions using a
recurrent neural network, 3) use a graph neural network to
propagate information among these representations, and 4)
use an attention mechanism to highlight the most important
functions in the call graph context. The result is a context
vector of the call graph that can be appended to the code
vector created by existing code summarization approaches.

We implement our approach and augment a baseline
neural model for code summarization. We perform an ex-
periment on the dataset drawn from large software repos-
itories. We show marked improvement over the baselines
in almost all cases. More importantly, we observe that
this improvement is orthogonal to the improvements made
by more complex representations of the subroutines being
summarized themselves. While better representations of the
code being summarized are helpful, our approach is helpful
in a different way. We release a complete package necessary
for replication in our online appendix (see Section 10).

2 BACKGROUND & RELATED WORK

This section discusses key background technologies and
related work, such as source code summarization and neural
encoder-decoder model designs.

2.1 Source Code Summarization
The term “source code summarization” was coined around
2009 by Haiduc et al. [37] for the task of generating short
descriptions of source code. The word “summarization”
referred to the underlying technologies borrowed from the
Natural Language Processing research community used to
summarize natural language documents. At the time, these
were dominated by keyword extraction techniques, such as
ranking the top-n words in a document using tf/idf or a
similar metric. A widely-accepted practice was to use the
context around source code to help this process [38], where
context was defined as a set of functions in the Function Call
Graph surrounding the code being described [39].

This line of research was largely put on ice around 2017,
with the introduction of neural models of source code and
encoder-decoder architectures (e.g., seq2seq, graph2seq) [3].
Figure 1 depicts this history. Column I in the figure groups
techniques based on IR, manual feature design, and other
heuristics. Column N refers to papers in which the un-
derlying model is based on a neural architecture. Column

G means the code is represented via graph or graph-like
features such as the AST. Column T means the model is
Transformer-based. Column C means the intellectual merit
of the paper is in using the code context.

Figure 1 shows an important pattern, that while neural
models have succeeded IR and template-based solutions,
the use of context is ripe for a resurgence of research interest.
Between 2017 and 2019, many papers achieved big gains
from the big data input. Their efforts were focused on how
to pre-process the data for use in existing neural models
(an exemplar in this category is the SBT by Hu et al. [23]
technique for linearizing an AST, which has been validated
by third parties [30]). Since then, two complementary strate-
gies have emerged to best improve performance of code
summarization: 1) better models of the code itself, such as
by Zügner et al. [35] and Liu et al. [36], and 2) models that
include context information, such as by Haque et al. [34].

More recently, retrieval-based techniques have also been
employed to use contextual information. In 2020, Wei et
al. [40] introduce Re2Com, a technique to find similar func-
tions in a database and use corresponding summaries as a
secondary input to neural network. In 2021, Li et al. [41]
introduced a technique to retrieve summaries of similar
functions and used them as a template. They proposed
a module to edit these summaries with new information
from the target function. These approaches are important,
given the wide re-use of source code in online repository.
However, our dataset and use-case is different, in that we
remove duplicate methods and doc-strings from our train-
ing set to prevent data leaks. Our approach does not rely on
the availability of documented code and summary inputs
to the model during prediction. We believe retrieval-based
techniques have different application conditions from ours,
and thus, do not serve as baselines.

I N G T C
*McBurney (2016) [13] x x
*Zhang et al. (2016) [14] x x
*Iyer et al. (2016) [15] x
*Rodeghero et al. (2017) [16] x x
*Fowkes et al. (2017) [17] x
*Badihi et al. (2017) [18] x
*Loyola et al. (2017) [19] x
*Lu et al. (2017) [20] x
*Jiang et al. (2017) [21] x
*Hu et al. (2018) [22] x
*Hu et al. (2018) [23] x x
*Allamanis et al. (2018) [24] x x
*Wan et al. (2018) [25] x
*Liang et al. (2018) [26] x
*Alon et al. (2019) [27], [28] x x
*Gao et al. (2019) [29] x
*LeClair et al. (2019) [30] x x
*Nie et al. (2019) [31] x
*Haldar et al. (2020) [32] x
*Ahmad et al. (2020) [33] x x
*Haque et al. (2020) [34] x x
*Zügner et al. (2021) [35] x x
*Liu et al. (2021) [36] x x
*Bansal et al. (2021) [12] x x
* (This Paper) x x x

Fig. 1. Snapshot of the past five years in source code summarization.
Column I stands for IR-based techniques. N means neural network-
based. G means the code is modeled as a graph. T means Transformer
designs. C means learning chiefly from code context.
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2.2 Project Context

In 2021, we [12] proposed an approach that improves
source code summarization using contextual information
from other files in the project. However, there was a random
element in the selection of the contextual information. We
selected n methods at random from other files in the project
to model “project context”. We view that work as a proof
of concept that shows the potential for improvement using
out-of-file context. After that project, we observed that this
random factor leads to high variance in terms of metric score
improvements. Table 1 shows how different random selec-
tions can impact the gains made using “project context”. The
v2 selection achieved much lower BLEU scores compared
to random selections. Whereas, the v3 selection achieved
a higher BLEU score than the selection published in that
work (v1). To eliminate this random element, we posit the
function call graph offers a logical solution. As part of the
call graph, selected methods from the project have a clearly
defined relationship with the method being summarized.
There is a flow of data through function parameters and
return values between nodes in the call graph. We design
our approach to learn this relationship between methods
in the context and the target function to be summarized.
Note, this paper uses a different dataset than the one used
in Table 1, explained in Section 4.

TABLE 1
BLEU for reproduction of the project context paper [12] with different

random seed values for selection of methods to include in the context.

Projcon BLEU
Models A 1 2 3 4
attendgru 15.87 36.22 18.89 11.55 8.03
projconv1 17.19 37.34 20.20 12.71 9.10
projconv2 16.36 36.15 19.29 12.07 8.52
projconv3 17.77 37.88 20.71 13.24 9.59

2.3 Encoder-Decoder Neural Models

The workhorse of almost all neural source code summariza-
tion approaches is the encoder-decoder model architecture.
This architecture consists of two learned representations
of paired inputs of data. The idea was initially proposed
for use in machine translation, where an “encoder” would
generate a vector representation of a sentence in e.g., French,
while a “decoder” would generate a representation of the
same sentence in e.g., English [42]. A key improvement
to the original model design is the addition of “attention”
around 2014 by Bahdanau et al. [43]. The purpose of atten-
tion is to connect features in the encoder representation to
features in the decoder representation. Usually in machine
translation, this means connecting a word in one language
to another e.g., “ami” in French to “friend” in English.

The basic structure of the encoder-decoder model has
found uses in many language generation tasks, such as
image captioning [44], question answering [45], and code
summarization (see above). While uses of the encoder-
decoder architecture are far too common to be covered in
one paper, notable surveys include: [3], [46], [47], [48]. This
paper is in the same vein as this related work, except that
we focus on encoding function call graph context rather
than details about the source code being summarized itself.
In this way, this paper may be viewed as bordering image

captioning in addition to machine translation, as we seek
to locate features in a context with a much broader scope
than the text that is to be generated. In translation, the
encoder sentence is usually expected to contain the features
necessary to translate it. In image captioning, often artifacts
such as surrounding text in a webpage are considered.

2.4 Function Call Graph Context

The Function Call Graph is a key abstraction of code context
used in software engineering literature for decades. The
graph itself consists of nodes, which are the functions (or
methods, subroutines) in a program, and edges, which are
the call relationships among the functions. It has long been
observed that the behaviors of a program, from a human
perspective, tend to be defined by these relationships [39],
[49], [50]. To take a classic example, the behavior of booking
a single passenger on a single flight in airline software is
unlikely to be implemented by just one function – there is a
constellation of functions in the call graph that would imple-
ment this feature [51]. Abstracting a program as functions
and function calls is one of the key components of human
programmers’ mental models of program behavior [52],
[53], and a mainstay of software engineering research.

In this paper, we define the call context of a subroutine
as the nodes that fall within two edges from the subroutine
in the program call graph. This scope includes the callers
of a subroutine and that caller’s callers. Plus, it includes
the functions that a subroutine calls, plus the functions
those functions call. Our definition of call context is in line
with related work, which has repeatedly shown that human
programmers almost always find the information they need
within two edges in the function call graph [51], [54], [55],
[56], [57]. This scope, while “only” encompassing two hops
in the call graph, turns out to cover an average of 8% of a
typical program in our subset. For example, in our dataset of
190k Java methods, projects have a median of 170 methods,
and the mean call context of a method includes about 14
methods.

3 APPROACH

This section describes our approach. Essentially we extract
the call context, and then use a neural model to learn a
representation of this context to predict summaries.

3.1 Modeling Call Context

The first step in our approach is to model the call context.
We define call context in Section 2.4 based on related work.
However, in practice, hardware and software limitations
mean not all information from all functions in this context
can be included. We extract the call context with a limit-
ing hyperparameter b (breadth) to indicate the maximum
number of calls per function. If a function has more than b
calls, we include only the first b calls that function makes.
The value of b is a delicate balance between maximizing
the number of functions in the context, while preventing a
single function from “taking over” the context by making
too many calls. The maximum value of b we are able to test
is 5, limited by the largest graph we can fit on the GPU
memory available to us.

Consider the example call context in Figure 2. The func-
tion setRadius() is the target, and is part of its own call
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Fig. 2. A depiction of the call context for an example function named setRadius(). We define call context as the functions within two hops in
the program function call graph (see Section 2.4).

context. To build the rest of the call context, we take the first
b functions that setRadius() calls. Then, we take the first
b calls that those functions make. These functions are the
“right side” of the call context in Figure 2. Then to make
the “left side”, we add a maximum of b functions in which
setRadius() is within the first b calls. Then we add the
b functions that call each of those functions. The maximum
number of functions in the call context is then 2∗(b2+b)+1.

We chose b=5, implying a maximum of 61 functions in
the call context. As we will note in Dataset Preparation
(Section 4), the mean number of calls per function in the
dataset is 2.7, and only around 25% made more than five
calls. Only four functions in the dataset had the maximum
of 61 functions in the call context.

3.2 Neural Model

The heart of our prediction model is a graph neural network
(GNN) that creates a vectorized representation of the func-
tions in the call context. We use a recurrent neural network
(RNN) to create a vector representation for the initial state
of each function in the call context. Then we use a GNN
to propagate information among these functions based on
their function calls. We combine this call context information

Fig. 3. The architecture of our approach. White areas indicate novel
additions for this paper. Gray areas indicate components of the model
loaded from a baseline, prior approach. Solid arrows indicate infor-
mation flow over which back propagation is allowed. Dashed arrows
indicate information flow without back propagation.

with information from a standard encoder-decoder model to
predict a summary for the function.

An overview of the neural model underpinning our
approach is in Figure 3. In general, our model is based
on an encoder-decoder architecture like most approaches
to neural code summarization. What is novel is that we
add components to the encoder to help the model learn
from call graph context (see our definition of call context
in Section 2.4). The gray components in Figure 3 (area 1)
indicate a standard encoder-decoder model in which the
encoder’s input is the source code of the function and the
decoder learns to represent the summaries. This encoder-
decoder model is the foundation of almost all neural source
code summarization techniques (see Section 2.1), and we
continue to use it in our approach.

The white components in Figure 3 indicate novel contri-
butions of this paper. The purpose of these components is
to create a vectorized representation of the call context of a
function. We combine this representation with the standard
encoder-decoder model. This works as follows:

In area 1, we obtain the source code for a target function
to summarize. That code is the input to the standard “gray”
encoder. We represent this part as:

C ′ = G2(E2(C)) (1)

T ′ = G1(E1(T )) (2)

T ′′ = SoftmaxActivation(

m∑
i=1

C ′
iT

′
i ) (3)

Tc =

m∑
i=1

T ′′
i T

′
i (4)

Ta = Tc ⊕ C ′ (5)

Here, G1 and G2 denote pertained RNNs for the function
(T) and comment (C) tokens respectively. E1 and E2 denote
the word embeddings for the function and comment tokens
respectively. The ⊕ symbol denotes a concatenation opera-
tion, i and j are iterative variable.

In area 2 we encode the source code for every function
in the call context of the target function. We use an RNN to
create a representation of the source code for each function
in this context. We use the same word embedding and
vocabulary as the standard encoder, and the initial state of
each RNN is the final state of the RNN from the standard
encoder. This operation is represented as:

N = GRU(E1(Gn)) (6)
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Technically, the call context becomes an mxn matrix
where m is the number of functions in the context and n
is the vector size of the RNN’s representing each function.

In area 3 we obtain the edges among each function
in the call context and store these edges as an adjacency
matrix. When we create the adjacency matrix, we treat
the call context edges as undirected. Otherwise, a GNN
would propagate information from the caller functions to
the target, but not from the callee functions. E.g., functions
on the left side of the target function in Figure 2 would
propagate information to the target, but not functions on
the right. In our approach, information from any functions
can propagate to any other functions within the call context.

We use a convolutional GNN to propagate information
among the functions in the call graph, based on the adja-
cency matrix. The GNN we use is of our own implemen-
tation. It is a faithful re-implementation of the GNN used
by graph2seq [58] and also used successfully for modeling
abstract syntax trees [59]. We represent a single “hop” of
GNN propagation as:

Nnew = ReLu(

m∑
k=1

(

m∑
x=1

EjxNix)jkWik) (7)

N = Nnew (8)

Here, N is the state of the context at the beginning and end
of a “hop”. E and W denote the edge adjacency matrix and a
randomly initialized weight matrix respectively. The output
of the GNN is a matrix with the same mxn shape as the call
context. The content of this matrix is similar as well, except
that the GNN propagates information among the nodes,
so that nodes near each other in the graph become more
similar to each other. In our view, this propagation is likely
to create a good representation of code context because the
edges represent actual information flow in the program.

In area 4 we compute attention between the decoder and
the post-GNN call context. The decoder represents words in
the summary, while the entries in the call context represent
functions in that context. Some words in the summary
may have more relevance to some functions than others.
For example, the word “record” in a summary may have
high relevance to functions related to audio/video files. To
capture this relevance, we compute attention between the
words in the decoder and the functions in the call context.
We represent this part as:

C ′′ = SoftmaxActivation(

m∑
i=0

C ′
iNi) (9)

Cc =

c∑
i=0

mC ′′
i Ni (10)

Here cm is the number of words in the summary, which is 13
for our experiment. Our attention mechanism is identical to
the one described by Luong et al. [60] and used extensively
in code summarization research [23], [30]. The difference is
that we compute attention to functions in call context rather
than only to words in the target function itself.

In area 5, the final step is to combine the prediction from
the standard encoder-decoder model (the “gray” part) with
the output prediction from the call context.

O = DenseReLu(Cc) (11)

O = O ⊕ Ta (12)

Cn = DenseSoftmax(O) (13)

Here, a dense layer is calculated after attention in both the
standard encoder-decoder model and the call context. We
concatenate the output from these dense layers into a single
vector, and then send that vector to another dense layer
which serves as the output layer.

3.3 Hyperparameters
Table 2 lists hyperparameters of our neural network. Due
to the high expense of computation time in training large
neural models, a grid search for optimal hyperparameters
is not currently feasible. However, satisfactory values for
many parameters are available in related literature: 1) we
use the vocabulary sizes (vd and ve) from recommendations
by LeClair et al. [61], 2) we use a GRU with a vector size
of 100 as recommended for modeling functions by Haque et
al. [34], and 3) as mentioned above, we use a convolutional
graph neural network to propagate information among the
functions in the call graph inspired by related work. We
discussed the values of b and m above in Section 3.1 among
other parameters, and we decided on h = 1, empirically
through RQ4 in Section 6.4.

TABLE 2
Hyperparameters of our neural network

Parameter Value Description
vd 10000 decoder vocab size
ve 75000 encoder vocab size
b 5 maximum calls per function
m 61 maximum functions in call context
n 100 embedding vector size
cm 13 number of tokens in the summary
RNN GRU type of RNN
GNN conv type of GNN
h 1 hops in GNN

3.4 Input/Output Details
There are two key components of the input/output details:
1) preprocessing, and 2) training procedure. For preprocess-
ing, note that the source code of a function and the summary
of that function are both inputs to the model during training.
We used the preprocessed summaries using techniques by
LeClair et al. [61]. We truncated to 13 words, dropped to
lower case, and removed punctuation. For source code,
the paper preprocessed by removing non-word characters,
splitting by camel case and underscore, and dropping to
lower case. We used the same preprocessing, except that
we did not remove non-word characters, and we replaced
newlines with a NL special token. We found in pilot studies
that these newlines and other tokens (brackets, periods, etc.)
led to better predictions.

Our training procedure is teacher forcing [62]. Essen-
tially what teacher forcing does is train the model to predict
summaries one word at a time, while providing the answer
at each step during training. A comprehensive discussion of
teacher forcing is beyond the scope of this paper, as it is the
most common means by which neural code summarization
algorithms are trained [23], [30], [34], [63].
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3.5 Hardware/Software Details
Our implementation and experimental hardware includes a
Xeon E5-1650v4 CPU, two Quadro P5000 GPUs with 16GB
of Video memory each, and 128GB of system memory.

Our software versions for reproduction include CUDA
11.2, Tensorflow 2.9, Python 3.10, Pandas 1.4, NLTK 3.6,
Debian Experimental Release (March 2021 Snapshot).

4 DATASET PREPARATION

We curated our dataset from a larger one that was used in
the project context paper we extend [12] and used to gener-
ate Table 1. To build our dataset, we extracted call graphs to
create the call context and adjacency matrices required for
our approach. However, we observed that a large percent
of the functions in the dataset used for the project context
paper are quite small and tend to involve rewriting the
words available in a subroutine’s signature. For example, a
method playMidiFile() may have a summary like “plays
a midi file.” This observation is further corroborated by re-
lated work that uses the same dataset [64]. While these short
methods are interesting targets for code summarization and
automatic documentation generation in general, we view
call context as a way to help write summaries for longer
sections of code that may make several function calls.
A function that is very short and makes no function calls
will have a limited call context and is less likely to benefit
from call context. Therefore, we prepared a subset of the
published dataset.

Our dataset originates from the one published by
LeClair et al [61]. We selected this dataset because it fol-
lows accepted practice in the field, such as splitting train-
ing/validation/test sets by project. Then, we selected the
largest 10% of Java methods from the dataset, where we
define “largest” by the number of tokens in each method.
Our reasons for using this threshold are two fold. First,
this threshold led to approximately 200k subroutines in the
dataset, which is near the upper limit of our resources for
extracting call graphs. We used srcml [65] to extract the
call graph for every project in the dataset, and then subdi-
vided these graphs into call context function and adjacency
matrices. Due to high I/O requirements, parallelization of
this process has limited benefits, and even 200k functions
took approximately two weeks of compute time. The second
reason we used this threshold is because it favors the larger
subroutines, versus, for example, a random selection.

Due to filtering, the number of samples in the dataset
decreases while the size of those samples increases. The
average number of tokens increases from 27 in original set
to 122 in our dataset. The number of methods in the call
graph has a median of 12 and mean of 14.2. Roughly 32%
of methods were called by more than 5 methods, as well as
24% called more than 5 methods. Due to resource constraints
explained in 3.1 the graph is limited to a breadth of 5. In
general, a vast majority of the methods chosen via the size
threshold both call (93%) and are called (also 93%) by at
least one other method.

5 QUANTITATIVE EXPERIMENT

This section describes our quantitative experiment involv-
ing computed metrics over our dataset. This experiment is
distinct from our qualitative experiment in Section 7.

5.1 Research Questions

The research objective of this experiment is to measure the
effect of call context on the prediction quality of neural code
summarization, in a reproducible manner and over large
datasets. We ask the following Research Questions (RQs):
RQ1 What is the difference between our approach and

recent baselines, as measured by automated metrics?

RQ2 Are the gains orthogonal, as measured by ensembles
of models to generate summaries?

RQ3 How does our model compare to the baselines when
the summary includes words from the call graph?

RQ4 What is the effect of breadth b and hops h on perfor-
mance, as measured by automated metrics ?

The rationale behind RQ1 is two fold. First, automated
metrics are inexpensive, so performance over several thou-
sand subroutines may be computed. This evaluation of a
large set reduces the risk of inadvertently “cherry picking”
a set for which one model works better than another (as
may happen in a human evaluation with only a few dozen
randomly selected samples). Second, it makes studies repro-
ducible – the datasets are available via our online appendix,
and automated metrics are well-defined in the literature. So
far, a vast majority of approaches use this type of evaluation.

The rationale behind RQ2 is that automated metrics are
measured as an average over the whole test set, but some
models may excel over a subset more than the other. Recent
work by Bansal et al. [12] and LeClair et al. [66] uses these
to capture orthogonal gains and generate better summaries
using ensembles.

The purpose of RQ3 is to explore “how” the call graph
helps generate better summaries. One possibility is that
there are unique words in the methods that are part of
the call graph that do not exist in the target method.
The reference summaries, written by human programmers,
could contain identifiers and other words from the caller
and callee methods. We ask this RQ to measure performance
of our approach over these niche subsets.

The rationale behind RQ4 is to find out how our design
choices affect the model performance. First, our graph layer
is inspired by LeClair et al. [59]. They found that the value
of h produces diminishing returns in terms of performance
for AST graphs, but we do not know if this is true for
call graphs. Second, we chose b = 5 because that is the
maximum number we could fit on our GPU. While we
cannot test out higher values of b, it may be that a smaller
graph performs better. We ask this RQ to quantify the level
to which these design choices affect performance of our
approach.

5.2 Methodology

Our methodology is based on the accepted practice fol-
lowed by most papers on neural source code summarization
techniques. First, as detailed in Section 4, we prepare our
dataset. The training, validation, test split is approximately
80%, 10%, 10%, though because these datasets were split
using a “by project” procedure to reduce biases (and because
we filter for larger functions), the split percentages are only
approximate. The second step is to train each baseline (plus
our approach) using the training set.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3279774

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 24,2023 at 21:29:29 UTC from IEEE Xplore.  Restrictions apply. 



7

We trained for a maximum of 20 epochs, and then chose
the model at the epoch that achieved the highest validation
set accuracy. Then we used that model to predict summaries
for subroutines in the test set. Finally, we computed ME-
TEOR [67], USE [68], ROUGE [69], and BLEU [70] scores for
predictions against the reference summaries for those sub-
routines. Recently, Roy et al. [71] evaluated several metrics
for source code summarization and recommended METEOR
as an alternative to BLEU. Haque et al. [68] found that
sentence encoder based metrics correlate better to human
similarity ratings compared to n-gram based metrics such
as METEOR and BLEU. They recommended a Universal
Sentence Encoder [72] based metric we report as USE. We
report BLEU-A and ROUGE-LCS scores to be consistent
with literature and our previous work with project context
that this paper extends. We use the python NLTK version
3.6 implementation of these metrics.

5.3 Baselines

Our experiment includes five baselines. We created faithful
reimplementations of each baseline in our own experimental
framework in order to reduce experimental variables. While
many papers do release reproducibility packages, there
are slight differences such as preprocessing/input changes,
different vector sizes or RNN types (e.g., LSTM vs. GRU),
pretrained word embeddings, etc. Therefore, output of the
models could vary due to implementation differences, while
we aim to measure the effect of call context only.

code2seq This approach represents a family of ap-
proaches that use paths in the AST to represent code, as
introduced by Alon et al. [63]. This model is consistently a
strong performer in experiments in various papers [34].

ast-attendgru-fc This approach is the “file context”
baseline introduced by Haque et al. [34]. It works by mod-
eling each subroutine in the same file with an RNN, then
computing attention between the output summary words
and the RNN output vectors for each of those subroutines.
It is similar to this approach in that other subroutines are
modeled for prediction, but it is different in that it does not
consider any relationships between subroutines.

codegnngru This approach represents a family of papers
that model source code as an abstract syntax tree (AST). This
approach is the best configuration reported by LeClair et
al. [59], which uses a GNN to encode the AST only, not any

external context. GNNs are a growing area of investigation
for modeling source code [24], [35], [73].

transformer This approach is essentially a vanilla
transformer-based seq2seq model, as described by Ahmad et
al. [33]. Transformer-based models have found strong accep-
tance in the NLP research community and are beginning to
be tested for code summarization.

HANcode This approach is the newest baseline that uses
a Hierarchical Attention Network designed for source code
summarization. This approach is a non-ensembled version
of the best performing approach proposed by Zhou et
al. [74], who recommend an ensemble with an AST based
approach for best performance.

5.4 Threats to Validity

This experiment carries threats to validity similar to most
studies of neural code summarization. The key threats are
the datasets and the automated metrics. Different conclu-
sions may arise with different random splits, since these
splits affect what is in the training set. We attempted to
mitigate this threat by using a project based split filtered
by length. The other key threat are the metrics BLEU and
ROUGE. These metrics compute word overlap, which is
only one way of measuring similarity. We attempt to mit-
igate this threat by also conducting a qualitative experiment
with human experts.

6 QUANTITATIVE STUDY RESULTS

This section includes our answers to RQ1, RQ2, and RQ3
based on the data collected in the quantitative experiment.

6.1 RQ1: Performance using Automated Metrics

We found that compared to our baselines, callcon
achieved the highest performance as measured by auto-
mated metrics. In Table 3 the top sub-table shows the
METEOR, USE, ROUGE-LCS, and BLEU scores over our
test set for each of the model configurations. For METEOR
and USE scores we also performed a paired T-test for sta-
tistical significance where P-value of less than 0.05 indicates
rejection of the null hypothesis and hence strongly suggests
statistical significance. This test was conducted compared
to our approach – therefore, the values are blank for our
approach. We found that callcon achieved highest scores
in all but one sub-metric, P score for ROUGE-LCS.

TABLE 3
Automated metric scores for baselines, our approach, and ensembles. Top subtable reports scores for standalone models where the T-tests for
METEOR and USE compare our approach with each baseline. Bottom subtable reports scores for ensembles of our approach and baselines

where the T-tests compare ensemble with the baseline.
Models METEOR USE ROUGE-LCS BLEU-A

Score T-test P-val Score T-test P-val P R F1 Score
code2seq 30.44 18.39 0.01 46.68 28.31 0.01 50.42 42.91 44.75 16.52

ast-attendgru-fc 29.51 23.01 0.01 45.69 32.74 0.01 49.54 41.57 43.70 15.55
codegnngru 32.27 8.90 0.01 49.42 14.67 0.01 51.15 44.49 46.07 17.94
transformer 33.24 3.46 0.01 51.87 0.49 0.31 51.81 45.58 46.97 18.53
HANcode 27.19 34.54 0.01 41.21 51.90 0.01 43.80 38.80 39.85 14.71

callcon 33.80 - - 51.95 - - 51.41 46.12 47.16 19.54

Ensembles METEOR USE ROUGE-LCS BLEU-A
Score T-test P-val Score T-test P-val P R F1 Score

code2seq+callcon 34.31 25.22 0.01 52.53 35.67 0.01 53.66 46.75 48.46 19.83
ast-attendgru-fc+callcon 34.33 30.45 0.01 52.53 40.73 0.01 53.47 46.58 48.30 19.77

codegnngru+callcon 34.77 17.88 0.01 53.04 24.82 0.01 53.91 47.00 48.68 20.15
transformer+callcon 35.09 14.31 0.01 53.84 15.70 0.01 53.83 47.43 48.92 20.22
HANcode+callcon 33.79 40.22 0.01 51.25 53.99 0.01 51.96 45.98 47.32 19.42
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(a) (b)

(c) (d)

Fig. 4. Graphs comparing metric scores for every baseline ensembled with every other baseline as measured by (a) METEOR scores, (b) USE
scores, (c) ROUGE-LCS F1 scores, and (d) BLEU scores. The x-axis names the five baselines and the y axis plots the scores ensembles. We use
the baseline scores for model ensembled with itself to maintain the structure of the graph.

Specifically, callcon achieves a 33.80 METEOR score
which we found to be a statistically significant improve-
ment over all baselines using the T-test. Our approach
achieves a 51.59 USE similarity score which is higher than
all other baselines, with a caveat that the statistical signifi-
cance cannot be confirmed over the transformer baseline.
callcon achieves a 19.54 BLUE-A score outperforming the
transformer baseline by 5.5%. Although it achieved a
slightly lower ROUGE-L Precision score, it achieves better
Recall and more importantly, better F1 scores. Therefore, we
posit that call graph can be used as external context to im-
prove performance of source code summarization models.

6.2 RQ2: Ensembles
We perform comparison using ensembles and find that our
approach improves all other approaches significantly and
orthogonally. We present data related to our findings in
Table 3 and Figure 4. Table 3 shows the METEOR, USE,
ROUGE-LCS and BLEU-A scores for ensembles in the bot-
tom sub-table. Compared to the top subtable, we observe
that ensemble with callcon significantly improves metric
scores for every baseline. For METEOR and USE, the paired
T-test compares the ensemble over the baseline model. We
observe high t-test values with P-values below 0.01 for
every ensemble when compared to the respective baseline.
We observe that overall transformer+callcon is the best

performing ensemble with 35.09 METEOR, 53.84 USE, 48.92
ROUGE-LCS F1, and 20.22 BLEU scores. These represent
a 4-7% grain over transformer baseline. Therefore, call
context can achieve significant orthogonal improvements
when ensembled with any of the baselines.

There is a chance that the simple process of creating
ensembles can improve performance. Therefore we compare
every possible combination of ensembles and find our ap-
proach consistently achieves the highest metric scores. In
Figure 4 we observe that every baseline when ensembled
with callcon achieves the highest METEOR, ROUGE, USE,
and BLEU scores. The black line in the graph plots scores for
baseline + callcon. We can see that this line is distinctly
above other configurations in terms of (a) METEOR, (c)
ROUGE, and (d) BLEU scores. For (b) USE score, we observe
that scores for ensembles with callcon and transformer
as the second model overlap for three out of 5 baselines.
However, we can see for the transformer baseline, our
approach is the best performing ensemble compared to
any other approach. We posit that transformer may be a
close competitor to our approach independently. They each
perform best for different subsets of the test set. Therefore,
we reassert that the increase in metrics achieved by call
context is orthogonal to other baselines. We posit that future
approaches may benefit from ensembles with call context.
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TABLE 4
Scores for our approach and baselines when evaluated for different subsets of the test set. Here wo indicates the number of words in summary

that exist in the source code of call graph nodes but not in the the target function.

METEOR USE
model wo=0 wo>=1 wo>=2 wo>=3 wo=0 wo>=1 wo>=2 wo>=3
code2seq 30.68 22.62 14.5 11.68 46.87 40.46 31.94 32.00
ast-attendgru-fc 29.75 21.58 17.10 09.21 45.88 39.29 34.28 28.97
codegnngru 32.56 22.67 16.62 14.75 49.64 42.51 33.52 35.08
transformer 33.50 24.65 15.83 14.27 52.07 45.38 32.95 33.43
HANcode 27.43 19.38 15.22 12.48 41.4 35.22 29.22 31.47
callcon 34.07 24.91 19.12 15.5 52.14 45.72 36.35 37.42

6.3 RQ3: Word Overlap

In Table 4 we report the METEOR and USE scores for dif-
ferent values of word overlap. We observe that for all levels
of overlap, our approach outperforms all of the baselines.
More interestingly, for wo >= 2, we find that callcon
achieves 20.7%, and 10.3% higher METEOR and USE scores
respectively over the transformer baseline. For that small
subset ( <1% of the test set ) we find that when there are
two or more words in the summary that exist in the call
graph, but not in the target function, our approach is able to
use those words correctly to improve the summary. We also
observe that some of these words might also be present in
the “file context”, which is why ast-attendgru-fc seems
to improve on this subset as well. Overall, we did not find
any level of word overlap where our approach performs
worse than a baseline, even when there is no word overlap.
This may indicate that our approach doesn’t just rely on new
words from the call graph functions. We posit this is just one
of the ways our approach helps improve summaries.

6.4 RQ4: Configurations

In Table 5 we report metric scores for callcon, with values
of h ranging from 1 to 5. Recall from Section 3.3 that h is the
number of hops in the call context GNN (Figure 3, area 3).
A value of h = 1 achieved the highest METEOR, USE, and
BLEU score. ROUGE-LCS F1 scores increase consistently
with the increase of hop size. We observe increase is due to
the increase in precision which comes at the cost of decrease
in recall scores, while F1 score strikes a balance between
precision and recall. Moreover, for all values of h, callcon
achieves scores higher overall scores than the transformer
baseline. This my indicate that while h has a slight effect

TABLE 5
Performance summary for different hops h of the GNN.

METEOR USE ROUGE BLEU
h Score Score P R F1 Score
1 33.80 51.95 51.41 46.12 47.16 19.54
2 33.68 51.65 51.97 45.89 47.21 19.41
3 33.74 51.75 51.92 45.98 47.25 19.38
4 33.75 51.76 51.92 45.99 47.26 19.46
5 33.68 51.76 52.54 45.73 47.33 19.29

TABLE 6
Performance summary for breadth values b for the call graph.

METEOR USE ROUGE BLEU
b Score Score P R F1 Score
1 32.90 50.69 50.75 45.22 46.76 18.70
2 32.94 50.78 50.80 45.25 46.79 18.73
3 33.23 51.43 51.09 45.35 46.92 19.01
4 33.79 51.89 51.63 45.77 47.09 19.47
1 33.80 51.95 51.41 46.12 47.16 19.54

on performance, models with call context achieve better
performance than models without call context. The reason
that there is low variance in scores for different hops may
partially be explained by Section 6.3, as the improvements
over the overlap subset may not be affected by hops, the
model is able to see those words for any value of h.

In Table 6 we report how metric scores change based
on the breadth b during the creation of the call graph.
As one would expect, we observe a consistent increase in
METEOR, USE, and BLEU scores as we increase the size
of the call graph. Recall that we chose b = 5 because that
is the maximum size of graph we could fit on our GPU. An
interesting observation is that even for b = 1, we see that our
approach achieves a higher BLEU score than all baselines
including transformer. This is not corroborated by other
metrics. Therefore we recommend future work evaluate
their approach over several metrics. We make another in-
teresting observation, in that score difference between b = 4
( maximum nodes = 41) and b = 5 (maximum number of
nodes = 61) is very small. Therefore, we recommend b = 4 if
resources are constrained. Due to limitation of our resources
we are unable to test for values of b greater than 5.

7 QUALITATIVE EXPERIMENT

We conduct a qualitative experiment as a supplement to the
quantitative experiment in the previous two sections. This
qualitative experiment with human experts compares our
approach to the reference, human-written summaries.

The scope of this study encompasses only a comparison
of callcon to the reference summaries in the dataset. The
quantitative experiment provides a “breath” evaluation of
two large datasets with thousands of samples in the test
set of each dataset. However, that experiment uses auto-
mated metrics to compare word overlap of predictions to a
reference, which leaves a gap related to the overall quality
of the predictions along criteria other than word overlap.
In other words, even if the predictions perfectly matched
the reference every time, the automated metrics do not
provide an in depth picture of how programmers perceive
these summaries. This qualitative experiment provides this
“depth,” though on fewer summaries than automated met-
rics as human studies are expensive in both cost and time.

Note that this experiment measures only perceptions of
quality, and therefore is only intended to compare percep-
tions of two sets of summaries. Programmers’ perceptions
may be affected by a lack of knowledge about the entire
software project [75], [76], so a low or high score should
not be interpreted globally, i.e., a low accuracy score does
not necessarily mean the summary is inaccurate – it is only
relative i.e., “approach A is perceived by this human expert
as less accurate than approach B.”

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2023.3279774

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 24,2023 at 21:29:29 UTC from IEEE Xplore.  Restrictions apply. 



10

7.1 Research Questions

The research objective of this experiment is to determine the
difference in quality of the summaries we generate to the
reference summaries in the dataset as perceived by human
experts. We ask the following RQs:
RQ5 What is the level of overall accuracy of generated and

reference summaries?
RQ6 What is the level of readability of generated and refer-

ence summaries?
RQ7 What is the level of completeness of generated and

reference summaries?
RQ8 What is the level of conciseness of the generated and

reference summaries?
We use the three criteria accuracy, conciseness, and com-

pleteness proposed for evaluating source code summaries
by Sridhara et al. [77] and further recommended by McBur-
ney et al. [78]. Accuracy is defined as the perceived level of
correctness of the information in the summaries. Complete-
ness is defined as the perception of whether the summaries
are missing information that should be in the summary.
Conciseness is defined as the perceived level of extraneous
material in the summaries. We added the question about
readability as a sanity check, to make sure the summaries
are sensible and readable english sentences.

7.2 Methodology

Our methodology adheres closely to procedure recom-
mended in earlier studies [77], [78]. For each participant,
we randomly select 40 Java methods from a subset of 200
methods we randomly picked from the test set (based on
the recommendation of around 90 seconds per method
evaluation, with a total workload of around 1 hour per
participant ). Next, we created a survey which displays a
Java method and a summary of that method. The summary
is either from our approach or from the reference summary.
To avoid biases [79], the survey did not reveal whether
the summary was from our approach or the reference. The
survey also displayed four statements:
1) Independent of other factors, I feel that the summary is

accurate.
2) The summary is missing important information, which

limits my understanding.
3) The summary contains a lot of unnecessary information.
4) The summary is written in easily readable english.
Next to each statement was set of radio buttons with a 1-4
scale, ranging from “Strongly Disagree” (1) to “Disagree”
(2) to “Neutral(3)” to “Agree” (4) to “Strongly Agree” (5).
We recruited twenty programmers with at least one year
of professional Java development experience. The program-
mers rate summaries for 40 methods, randomly selected and
different for each participant.

The survey output consisted of two sets of 1-5 scores for
each of the four statements: one set was for our predicted
summaries and one set was for the reference summaries. We
report these sets of scores in aggregate (e.g., via boxplots).
We also report results of Mann-Whitney U tests between
sets of ratings for each quality criterion for predicted and
reference summaries. For example, we compare overall
accuracy between predicted and reference summaries. The

Mann-Whitney U test is appropriate because it is a non-
parametric and non-paired. A non-parametric test is suitable
because our sample size is not large enough to reasonably
assume a normal distribution. A non-paired test is suitable
because we have only roughly equal numbers of ratings
for the same method, because our survey chose randomly
whether to display a generated or reference summary.

7.3 Threats to Validity
The main threats to validity of this study include the par-
ticipants and the selection of methods from the test set. We
recruited 20 participants from a large pool of programmers,
but the risk remains that different programmers may give
different answers. To mitigate this risk we present box-plots
instead of average numbers so we may draw conclusions
from the overall distribution. Also, we randomly selected
200 Java methods for the study, of which each participant
evaluated 40, which is as large a pool of summaries we
could reasonably ask participants to evaluate (give time con-
flicts with regular career duties). However, the risk remains
that our conclusions could vary with methods. Another
threat is that our qualitative study does not compare our ap-
proach against any of the baselines. We do this following the
recommendations from Roy et al. [71] that found that score
differences of less than 2 points may not be detectable by
small human studies such as the one we conduct. Although
these improvements are very important, it would require
a large human study to detect a small improvement over
a baseline. Therefore, our qualitative evaluation compares
our approach against the ground truth. The goal of this
study is to test if the predicted summaries are reasonably
accurate and human readable, when compared with the
ground truth.

8 QUALITATIVE STUDY RESULTS

We answer RQ5 - RQ8 in this section, using the experimental
data we collected in our survey in the previous section.

8.1 RQ5: Accuracy
In Figure 5 we show the accuracy ratings for both generated
and reference summaries. The mean score for the refer-
ence summaries was about 3.4, which is between “neutral”
and “agree” for the question about accuracy. In compar-
ison, the mean score for callcon was about 3.3, which
is comparatively close. We expect a lower accuracy from
generated summaries ( recall the METEOR scores are in
the 30s). The range of scores in the boxplot from first to
third quartile, shown by the grey box, is almost identical for
both generated and reference summaries. A more interesting
observation is that the median score for both is 4, which
correlates to “Agree”. This means that roughly half of the
participants marked “agree” or “strongly agree” for the
accuracy of generated and reference summaries. The other
half were split between “neutral”, “disagree”, and “strongly
disagree”. Although this may indicate that the reference
summaries of lower accuracy of quality, we caution against
drawing such conclusions due to two reasons. First, we
truncate all summaries to 13 tokens due to the design of our
neural network and recommendations from related work.
Programmers may simply expect a longer summary, and
could mark the summary inaccurate. Second, we only show
the participants raw code of the target function not the
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(a)

(b)
Fig. 5. Human evaluation ratings for (a) Accuracy and Readability, and
(b) Completeness and Conciseness. Higher is better for accuracy and
readability, while lower is better for completeness and conciseness as
they were posed negatively. The black line in the boxplot indicates the
median. Red line indicates the mean.

entire project. Programmers may also perceive information
as inaccurate because they do not understand the entire
project, even if the author of the summary actually included
relevant insights [75], [76]. If the summaries have words that
are not in the target function but in the project, such as found
in Section 6.3, participants may mark those as inaccurate.

8.2 RQ6: Readability

We found that most programmers found both generated and
reference summaries readable. The mean score for callcon
was 3.98, which is a hairline away from “agree”. Surpris-
ingly, the mean for reference summaries was slightly lower
at 3.88, although the variance between quartiles is smaller
for reference summaries. Mean values can be skewed by
the opinion of couple of programmers that may simply
prefer another sentence structure than the one used by
reference summary. Table 8.3 suggests this difference is not
statistically significant. In both cases, the median score was
4. This median was the lower end of the distribution for
human-written reference summaries. Given both the mean
and median, we posit that both generated and reference
summaries follow a good sentence structure that program-
mers find acceptable, with a very small difference in human
evaluation between the two.

TABLE 7
Mann-Whitney U test results comparing ratings for callcon and

reference summaries.

Accuracy Readability Completeness Conciseness
U 82012 93323 100878 95320
Ue 100453 89142 81588 87146
p-value 0.008 0.531 0.006 0.228

8.3 RQ7: Completeness

We found that most programmers found both generated and
reference summaries to be incomplete – with a mean score
above 3 for both, which is closer to “agree” than “disagree”.
This rating is slightly closer to “neutral” for reference sum-
maries and this difference is statistically significant (See
Figure 8.3). Median rating for both is 4, i.e., “agree”. Recall
that we pose this question negatively, therefore “agree”
means that programmers think there is missing information
that limits their understanding. One explanation for both
generated and reference summaries, in line with related
literature, is that the information in the reference summaries
is out of date [10]. Another explanation is that we truncate
summaries to 13 words as recommended by the original pa-
per that released the dataset [61]. Additionally, for generated
summaries, one explanation is that they have “<UNK>”
tokens due to the limited vocabulary, while reference sum-
maries do not have any such limitations. The occurrence of
an “<UNK>” token would make the summary incomplete,
especially if that word is important such as identifier names
that usually fall out of vocabulary for our approach. Overall,
we find that programmers want more information from
source code summaries, and recommend future work to
consider training on, and generating longer summaries.

8.4 RQ8: Conciseness

We found no significant difference in the ratings for con-
ciseness in Table 8.3. In general, programmers tended to
view the summaries from both approaches as concise, with a
mean and median for both sets of summaries around 2 (“dis-
agree”). Recall that we framed this question in a negative
tone, therefore “disagree” and “strongly disagree” indicate
that the summary is concise and does not contain useless
information. This result is in line with our observation in
RQ5-RQ7 that a majority programmers felt the summary
was missing information but accurate and readable.

9 CONCLUSION

This paper advances the state-of-the-art with an approach
to source code summarization that includes function call
context. Call context has long been a resource in software
engineering research to improve techniques for a variety of
problems, though current literature does not explain how
to exploit it for neural models source code summarization.
Prior to neural models “taking over” source code summa-
rization research, using call context was mainstream. We
show one way to make use of it in recent neural models.

We evaluated different configurations of our approach
against several baselines in a quantitative experiment, fol-
lowed by a comparison to the reference summaries in a
qualitative experiment. In the quantitative experiment, we
showed that our approach improves over the baselines in a
large dataset. We also showed that our approach improves
automated summaries over other models for a niche set.
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In the qualitative experiment, we show that participants
found our summaries reasonably accurate, readable, and
concise. However, a majority of them found both generated
and reference summaries incomplete.

Broader impacts of this paper include suggestions for
future work implied by our experimental results. First,
we advise that future work explore different subsets of
their dataset where one approach excels over another. We
recommend ensembles as a way to combine improvements
for future work. Second, we found that metric scores do
not correlate with each other in terms of improvements. We
recommend future work to use multiple metrics, especially
metrics such as METEOR in favor of the standard BLEU
metric. Third, the qualitative experiment suggests studying
the accuracy of the underlying reference examples. While
caution is advised against concluding that the reference
summaries are inaccurate (since the ratings are based on
perceptions of reading only the method’s code and sum-
mary), the results do indicate that more study is needed
into the reasons for the lower perception of accuracy and
completeness of these summaries.

10 REPRODUCIBILITY

We strongly endorse and encourage reproducibility and
future research. We provide our complete datasets, scripts
for generating these datasets, our approach implementation,
and various other information via our online appendix:

https://github.com/aakashba/callcon-public
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