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ABSTRACT
Neural clone detection has attracted the attention of software engi-
neering researchers and practitioners. However, most neural clone
detectionmethods do not generalize beyond the scope of clones that
appear in the training dataset. This results in poor model perfor-
mance, especially in terms of model recall. In this paper, we present
an Abstract Syntax Tree (AST) assisted approach for geneRalizable
neural clone detectiOn, or ASTRO, a framework for finding clones
in codebases reflecting industry practices. We present three main
components: (1) an AST-inspired representation for source code
that leverages program structure and semantics, (2) a global graph
representation that captures the context of an AST among a cor-
pus of programs, and (3) a graph embedding for programs that, in
combination with extant large-scale language models, improves
state-of-the-art code clone detection. Our experimental results show
that ASTRO improves state-of-the-art neural clone detection ap-
proaches in both recall and F-1 scores.
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1 INTRODUCTION
Code Clones refer to syntactically or functionally similar code frag-
ments within or between software systems [18]. Having clones in in-
dustrial codebases can substantially increasemaintenance costs [10].
For example, 22.3% of operating systems’ defects were introduced
by code cloning [27]. Moreover, clones can also lead to intellectual
property violations and security problems [4]. With the increasing
scale of modern software, clone detection (CD) techniques have
been developed to automatically detect clones within corpora of
code. Traditional CD approaches aim to find similar code patterns
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by leveraging abstract representations, including tokens [13, 21],
Abstract Syntax Trees (AST) [3, 9], Program Dependency Graphs
(PDG) [28], and other intermediate representations. However, these
methods frequently focus on one representation but ignore others,
leading to a failure to generalize across diverse software corpora.

With the rise of neural networks, CD techniques have leveraged
neural architectures that learn program semantics and structure [14,
22]. For example, White et al. [24] learns both lexical and syntactic
embeddings by sequence modeling, Zhang et al. [26] incorporates
code structural information within a Long Short Term Memory
(LSTM) to improve detection performance, and Yu et al. [25] applies
machine learning to this task. These neural CD approaches are
based on learning patterns of semantics in the dataset and follow
common practices in deep learning. While these models achieve
high precision, their applications are restricted to the domain of
semantics present in the programs that comprise the training data.
That is, when code fragments from other domains are placed as
input to such models, the detection performance as measured by
recall is close to zero. This inability to generalize across software
domains can be problematic due to the large scale of industrial
software codebases.

In this paper, we propose ASTRO, a novel framework that com-
bines neural network architectures, Abstract Syntax Trees, and
context-aware program structure to quickly and accurately detect
code clones. Our approach is based on two key insights derived
from domain knowledge in software engineering: (1) identical code
snippets share identical AST structures. Even though large pro-
grams can have large ASTs, there is a limited number of node types
and topologies of ASTs for a given programming language. This
insight allows us to capture the key structural characteristics of a
program and detect code clones that only differ on detailed design
(i.e., variable names, adding or deleting statements, etc.). (2) Unseen
code snippets can be represented and retrieved with a combination
of previously-seen (sub-) ASTs. With this insight, we build a global
graph with training data (i.e., programs) that captures structural
and co-occurrence information of nodes in source ASTs (see Sec-
tion 3.2). Previous work such as ASTNN [26] have also considered
neural networks and graph embeddings of ASTs as monolithic, end-
to-end systems. However, our approach can be used as a plug-in
to existing pretrained models (such as CodeBERT, RoBERTa, and
ASTNN) to enhance the performance and generalizability of code
clone detection.

ar
X

iv
:2

20
8.

08
06

7v
1 

 [
cs

.S
E

] 
 1

7 
A

ug
 2

02
2

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


ASE’22, 2022, Ann Arbor, Michigan Yifan Zhang, Junwen Yang, Haoyu Dong, Qingchen Wang, Huajie Shao, Kevin Leach, and Yu Huang

Code A

Code B

Clone Detection

To AST

To AST

Global AST Graph Learning & Subgraph QueryAST Parsing and Truncation

Train global AST graph representation

All Source Code

Extract Pretrained Embedding (PE)

Extract Pretrained Embedding (PE)

Query

Query

AST A

AST B

Global AST Graph

Code B Embedding

Code A Embedding

(a) (b) (c)

Into Detection Head

Extract Subgraph Embedding (SE)

*Fixed during query phase

Pretrained and Subgraph Embedding

Figure 1: Diagram of ASTRO. It consists of three main components: (a) AST parsing and truncation 3.1, (b) global AST graph
learning andmatching 3.2 and (c) pretrained and subgraph embedding extraction 3.3. The global AST graph in (b) is built from
the training data. In practice, Code A and Code B would be snippets of source that are not part of the training set.

At a high level, ASTRO consists of three components, illustrated
in Figure 1. First, we parse all training programs into ASTs
with 𝑘-hierarchy truncation and build a global AST graph ac-
cordingly. Then, each pair of code snippets to be considered for
clone detection are queried from the global AST graph with
their truncated AST representations. Lastly, we introduce a
novel strategy to generatemerged subtree embeddings for each
code pair as plug-in to their embeddings extracted from a pretrained
model, and input the concatenated embedding to our non-linear
detection head to improve the generalizability of clone detection.
We elaborate on the design of ASTRO in Section 3.

We evaluate ASTRO using Big Clone Bench [20] and compare
against typical CD methods [9] and more recent neural CD meth-
ods [19, 24]. Our results show that, while ASTRO sacrifices precision
by less than 0.19, it substantially improves the recall by 0.85 and F-1
score by 0.80. This indicates that ASTRO is capable of more readily
generalizing clone detection across input programs across software
domains. The main contributions of this paper are:

• ASTRO, a graph-based andAST-guided neural networkmodel
for code clone detection.

• A novel graph-based approach to capture inherent informa-
tion of code snippets for generalization.

• A novel approach to leverage domain knowledge in SE to
improve the large-scale pretrained models in AI.

• A systematic evaluation of ASTRO on neural clone detection
and pretrained model enhancement. ASTRO improves the
recall and F1 score of neural CD methods, and enhances the
generalizability of large-scale pretrained models.

The rest of the paper is structured as follows: Section 2 highlights
previous related work, Section 3 describes the technical approach
behind the ASTRO framework, Section 4 presents our evaluation
and discussion for ASTRO, and Section 5 concludes the paper.

2 BACKGROUND AND RELATEDWORK
Code clones are widespread and prevalent since developers fre-
quently reuse code via copy-paste to reduce programming effort.
Previous studies indicate that 12% of Linux code was identified as
code clones [12], and 19% of the X Window system functionality
entails code clones [2].

Unfortunately, code clones increase the likelihood of errors and
software defects. Many studies have indicated serious negative
impacts of code clones in software evolution, including hidden
bug propagation [17], unintentional inconsistencies [7], and high
instability [16]. Substantial research has been conducted to detect
code clones and related defects.

Traditional code clone detection. Before the renaissance of
neural networks, code clone detection was categorized in three
ways: string-based, in which substrings of program source code
were directly compared [2], token-based, in which lexical program
token sequences were directly compared [11], and parser-based,
in which graph structures like ASTs and PDGs were directly com-
pared [3, 9]. However, these methods often overfit or miss complex
cases in which code may be semantically similar but structurally
different (e.g., inlined functions, renamed variables, or nested loops
in different order).

Neural code clone detection More recently, several works
based on neural networks have been explored for code clone detec-
tion, which have focused on learning abstract representations of
code such as ASTs [26], PDGs [28], and CFGs [5]. Although these
methods can achieve high precision (i.e., given a source code input,
they can identify a low number of clones), they fail to generalize
when subtle changes exist in code clones, resulting in poor recall
(i.e., given a source code input, these models cannot identify all
clones of that input).
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public static void fen(int a[], int x) { 

    int k, b=2, c,t; 

    for(k=0; k<x; k++) { 

        c=a[k]; 

        t=look(c,b); 
        System.out.println(t); 
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Figure 2: Illustration of the global AST graph construction and learning. Subfigure (a) shows an example program and AST,
Subfigure (b) shows how inter- and intra-hierarchy edges are modeled in the global graph, and Subfigure (c) shows how each
node embedding is initialized and trained to form the global graph.

3 APPROACH
ASTRO consists of three main components, shown in Figure 1. Our
task is to identify whether two input code snippets are clones, thus
it is a supervised binary classification task. Given two source code
snippets as input, we first parse them into ASTs, then derive an
embedding based upon fixed-depth walks of each subtree in each
AST (Section 3.1). Then, we generate a global graph that captures the
relationships that exist between subtrees of an AST (e.g., methods
are defined in classes, thus method subtrees are related to class
subtrees). Our global graph construction allows for the creation
of a merged embedding that captures both structure (by matching
ASTs and subtrees between snippets) and semantics (by capturing
the context in which various subtrees appear) (Section 3.2). Finally,
we use a non-linear detection head to determine whether the two
input snippets are clones (Section 3.3). We discuss each step below.

3.1 AST Parsing and Truncation
Each pair of code for clone detection is first parsed into ASTs. In
this paper, we consider Java programs for our evaluation, we parse
using the JavaLang parser1. JavaLang’s abstract grammar contains
19 node types. As ASTs are recursive structures, they can be an
unlimited height depending on the size and complexity of a given
program. However, we hypothesize that very deep nodes in the AST
are less important for conveying generalizable program semantics
thanmore shallow nodes. Thus, we derive an embedding of an input
program’s AST by truncating the tree to a fixed height 𝑘 . We refer
to each layer of sibling nodes as a hierarchy of nodes kept within
the truncated AST. In our experiments, we set 𝑘 = 5, meaning we
keep all nodes of height 5 or less from the input AST.

3.2 Global AST Graph Learning and Subgraph
Query

To address the challenge of generalizability, we construct a global
AST graph using truncated ASTs obtained from the previous step
(Section 3.1). We leverage two pieces of information from all pro-
grams in a training corpus to build the global AST graph: (1) the
types of nodes in the ASTs, and (2) edges between nodes within
each AST. Both are available at each level of each AST. An indica-
tive example is shown in Figure 2. The input program is parsed

1JavaLang is available at https://github.com/c2nes/Javalang

into an AST, from which 𝑘 hierarchies of nodes are kept (Fig-
ure 2 (a)). When quantifying the co-occurrences of different nodes
within an AST, we model inter-hierarchy edges (e.g., ForStatement
→ Assignment) and intra-hierarchy edges (e.g., Assignment →
MethodInvocation) in the construction of the global AST graph
(Figure 2 (b)). Each AST node is represented by an embedding
(256 dimensions in our experiments), which reflects an average of
embeddings of each child (Figure 2 (c)).

To build the global AST graph, we apply unsupervised graph
representation learning with the GraphSAGE algorithm [8]. Graph-
SAGE is a graph representation learning method that learns the
embeddings of nodes in the graph based on graph structure and
node features. Before training the global graph representation, we
use Flair word embeddings [1] to initialize the word embedding
for each name of each node type (e.g., “ForControl”) in the AST
with a dimension of 256 (adopted from GraphSAGE). For sequence
aggregation in GraphSAGE, we apply the default mean aggregator
and obtain a 256-dimension embedding vector for every node in
the global graph. Due to the large scale of edge modeling in the
global AST graph, we set the sampling ratio of all edges to 0.1% to
mitigate the risk of the over smoothing problem.

With the global AST graph trained by the training corpus of
programs, to compare whether two code snippets are clones, we
make queries of their ASTs against the global graph to obtain their
corresponding node representations (i.e., a subgraph from the global
graph), as shown in Figure 1 (a) and (b). In the query process,
we finalize the representation for the subgraph (corresponding to
the given AST) using all its node embeddings based on its tree
structure. Specifically, starting from the bottom of the AST, we
take the average of all embeddings of each node’s children, then
repeat the process until we reach the top of the tree. The final
subgraph embedding of the AST is a single 256-dimensional vector
that reflects an average of all of the nodes in the AST.

3.3 Pretrained and Subgraph Embedding
Extraction

Finally, we concatenate the subgraph embedding (Section 3.2) with
a pretrained embedding (of the source code tokens) as our final AS-
TRO embedding to be used for clone detection, shown in Figure 1 (c).
In ASTRO, the pretrained embedding can be adopted from any state-
of-the-art language model, such as RoBERTa [15] or CodeBERT [6].
Since the AST representation only reflects program syntax and

https://github.com/c2nes/Javalang
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structure, we further introduce program semantics by adopting
pretrained code models to our detection framework. For example,
by adopting RoBERTa, the final code embedding concatenates a 768-
dimension pretrained embedding with our 256-dimension subgraph
embedding. This strategy improves the overall representation of
the input code snippets for the clone detection task.

To make a final prediction, we integrate a non-linear detection
head for clone detection in ASTRO, following common practice.
Specifically, for our experiments, we adopt the detection head in
CodeBERT [6] and simplify the structure to three tanh-activated
non-linear layers with 512, 256, and 128 hidden nodes, respectively,
to test the effectiveness of our ASTRO plug-in. We use a learning
rate of 1e-3, dropout rate of 0.1, batch size of 512, and 50 epochs
during training.

4 EMPIRICAL EVALUATION
4.1 Dataset
We evaluate ASTRO on Big Clone Bench (BCB) [20], a widely-used
dataset for clone detection. The training, validation, and testing
splits follow the state-of-the-art work: 901,028 training code pairs,
and 415,416 validation/testing code pairs.

4.2 Evaluation Results
We evaluate the performance of ASTRO with three metrics: pre-
cision, recall, and F1 score. We compare ASTRO with multiple
traditional and neural CD models. As shown in Table 1, in the clone
classification task, Deckard [9], DLC [24], and SourcererCC [19]
models have relatively higher precision, but very low total recall,
indicating their ineffectiveness in revealing structurally similar but
semantically diverse clones. In contrast, ASTRO sacrifices a trivial
amount of precision (- 0.19) compared with DLC, but achieves much
higher recall (+ 0.85) and F1 (+ 0.80), demonstrating effectiveness
in revealing structurally similar clones.

Table 1: Quantitative evaluation of ASTRO and other neural
clone detectionmethods using precision, recall and F1 score.
Results of Deckard, DLC and SourcererCC are from [23].

Approaches Precision Recall F1

Deckard [9] 0.93 0.02 0.03
DLC [24] 0.95 0.01 0.01
SourcererCC [19] 0.88 0.02 0.03

ASTRO (Ours) 0.76 0.86 0.81

4.3 Ablation Studies
In this section, we study the contributions of each proposed module
in the subgraph embeddding of ASTRO as input into detection
head without concatenating the pretrained embedding, denoted as
ASTRO (Graph). Experimental results of three ablation studies are
shown in Table 2.

In the first row, ASTRO (Graph) indicates the use of subgraph
embeddings alone, without any additional concatenation to other
embeddings. In (A), we remove the upward merging process of AST
hierarchies and use average embeddings of all AST nodes. It shows

Table 2: Ablation studies of ASTRO (Graph). (A) removes
embedding merging in the subgraph, (B) removes edge sam-
pling before training global graph representation, and (C) re-
moves the whole graph learning and uses word embeddings.

Approaches Precision Recall F1 Recall Diff

ASTRO (Graph) 0.16 0.79 0.25 N/A
No Merged Embedding (A) 0.16 0.59 0.25 - 25.3%
No Edge Sampling (B) 0.16 0.65 0.25 - 17.7%
No Graph Learning (C) 0.16 0.51 0.24 - 35.4%

Table 3: Discussion of generalizability of pretrained models.
*The RoBERTa and CodeBERT models in this table are fine-
tuned with our simplified non-linear detection head.

Approaches Precision Recall F1 F1 Dif

RoBERTa∗[15] 0.69 0.73 0.72 N/A
CodeBERT∗[6] 0.70 0.84 0.76 N/A

ASTRO (RoBERTa) 0.65 0.86 0.74 + 2.8%
ASTRO (CodeBERT) 0.76 0.86 0.81 + 6.6%

a decrease of 0.20 in recall, indicating that merged embeddings
maintain critical hierarchical information of program code. In (B),
due to the large quantity of edges, we increase the sampling rate
from 0.1% to 10% to imitate the learning of GraphSAGE without
edge sampling. This shows a decrease of 0.14 in recall, indicating
possible over-smoothing in graph representation learning. In (C),
we directly apply 2148 dimensional Flair word embedding from the
names of node types. This leads to a reduction in recall by 0.28,
demonstrating the necessity of use graph embedding to improve
node representation quality.

4.4 Discussion
We further discuss the generalizability of ASTRO with respect to
pretrained models by comparing performance with and without
our embedding in combination with a pretrained embedding. As
shown in Table 3, when input to the same non-linear detection head,
concatenating our embedding to RoBERTa and CodeBERT embed-
dings improves F1 scores by 2.8% and 6.6%, respectively, along with
much higher recall. This demonstrates that our approach improves
generalizability to additional code clones previously undetected by
state-of-the-art models.

5 CONCLUSION
In conclusion, we present a novel approach that leverages struc-
tural information from ASTs combined with pretrained models to
build a code clone detection framework suitable for industrial code-
bases. Our results demonstrate an improvement on generalizability,
and can be used in tandem with existing language models to im-
prove recall and F1 scores overall. We hope this work can inspire
additional work addressing generalizability issues in neural clone
detection, especially with respect to improving recall for software
across domains, as in real-life industrial applications.
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