Who’s Pushing the Code?
An Exploration of GitHub Impersonation

Yueke Zhang!, Anda Liang', Xiaohan Wang', Pamela Wisniewski!, Fengwei Zhang?, Kevin Leach', Yu Huang

1

YWanderbilt University, Nashville, USA
{yueke.zhang, anda.liang, xiaohan.wang.1, pamela.wisniewski, kevin.leach, yu.huang}@vanderbilt.edu
2Southern University of Science and Technology, Shenzhen, China
zhangfw @sustech.edu.cn

Abstract—GitHub is one of the largest open-source software
(OSS) communities for software development and collaboration.
Impersonation in the OSS communities refers to the malicious
act of assuming another user’s identity, often aiming to gain
unauthorized access to code, manipulate project outcomes, or
spread misinformation. With several recent real-world attacks
resulting from impersonation, this issue is becoming more and
more concerning within the OSS community. We present the
first exploration of the impact of impersonation in GitHub.
Specifically, we conduct structured interviews with 17 real-world
OSS contributors about their perception of impersonation and
corresponding mitigations.

Our study reveals that, in general, GitHub users lack aware-
ness of impersonation and underestimate the severity of its
implications. After witnessing a demo of impersonation, they
show significant concern for the OSS community. Meanwhile,
we also demonstrate that the current best practices (i.e., commit
signing) that might mitigate impersonation must be improved
to encourage use and adoption. We also present and discuss
participant perceptions of potential ways to mitigate GitHub
impersonation.

We collect a dataset comprising 12.5 million commits to
investigate the current status of impersonation. Interestingly, we
find out that currently impersonation cannot be easily detected.
We observe that existing commit histories treat impersonation
behavior identically to pull request events, resulting in a lack of
detection methods for impersonation.

Index Terms—QOpen-Source Software, Impersonation

I. INTRODUCTION

Over the past years, GitHub has evolved to become more
than just a platform for open-source software (OSS) devel-
opment but also a social ecosystem that democratizes the
field, enabling contributions from diverse backgrounds and
skill levels [[1]. In particular, GitHub has a dramatic impact
on software development, education, and social networking
among developers [2], [3]. It is also a social platform for OSS
developers to communicate and share knowledge, as well as
develop their social profiles [4]]—[6].

GitHub adopts a flexible approach to commits as a natural
consequence of emphasizing collaboration. Since it is based
on git, users can freely change their commit email, allowing
developers to commit not limited to a single account [7].
However, this flexibility also presents challenges related to
identity issues within the community. With just one git com-
mand, a developer can assume anyone’s identity to make

commits. This commit mechanism can lead to unexpected
malicious behaviors. As illustrated in Figure [T} an attacker
(“Eve”) can configure her email to pretend to be a credible
developer, enabling them to introduce malicious code into
projects. We refer to such behavior as impersonation. It is
difficult to determine who is pushing the code in a commit
under impersonation.

Real-world attacks have exploited impersonation in GitHub
in very recent years. A newly-emerged supply chain at-
tack used impersonation to compromise GitHub reposito-
ries [8] in 2022. More alarmingly, a North Korean group
has implemented malware by creating repositories relating
to blockchain, cryptocurrency, and online gambling in 2023.
These repositories involve the impersonation of reputable
developers committing to them [9]]. In turn, victim users are
deceived into downloading the malicious software associated
(in the form of malicious npm packages in the case of [9]).
With the growing security and privacy threats posed by imper-
sonation, very little work has explored warning GitHub users
about the risks associated with impersonation [10].

Existing research on OSS security focuses on issues like
API leakage and metadata manipulation, overlooking the im-
personation issue [11]-[15]. Though features, like commit
signing, could potentially mitigate impersonation, they may
not be widely used nor practical enough for wide acceptance.
Impersonation is a natural consequence of the git architecture,
and indeed GitHub already has policies forbidding imper-
sonation [16]. However, we still lack an understanding of
how impersonation influences developers in OSS communities,
especially on GitHub. We present the first evaluation of devel-
opers’ perception and awareness of impersonation and explore
potential mitigation strategies for this issue. We investigate (1)
the awareness of impersonation among GitHub users, (2) the
level of concern among developers regarding impersonation,
(3) the widespread acceptance of official practices (e.g., com-
mit signing), (4) strategies to mitigate impersonation from the
perception of GitHub users, and (5) the feasibility of detecting
impersonation.

In our study, we conducted semi-structured interviews with
17 GitHub contributors. We reveal that the majority of par-
ticipants were unaware of impersonation and underestimated
its severity until encountering examples of impersonation.

Impersonation in GitHub Workflow

_/:k;\ Credible
' y IDeveIoper: Bob

— Pueh - [=
- Pull requesto O Merge — -
— _— N
Malicious Code Victim Repository
L
(%\;'\

o

Identity Configuration

a-d

Attacker: Eve Displayed Author: Bob

Fig. 1. The figure illustrates an impersonation scenario on GitHub. The
attacker Eve aims to introduce malicious code into a repository; she can
pretend to be a credible developer “Bob” by configuring her commit email to
match Bob’s. The tactic causes Eve’s potentially malicious commits to appear
as though they were created by Bob, in turn gaining trust from individuals in
a victim repository.

We also collected data encompassing 12.5 million commits,
from which we measured that 56% of the commits did not
use commit signing. Furthermore, we investigate the reasons
why developers do not adopt commit signing. Even though
impersonation is a concern for participants, we also discovered
that there is currently no singularly effective method to identify
impersonation behavior within GitHub commit history, primar-
ily due to the similarity that manifests between pull requests
and impersonation in git commits.

In summary, our study is the first to investigate GitHub im-
personation both from the perspective of developers and data
accessible from GitHub. Specifically, we make the following
contributions:

1) We conduct the first study to investigate impersonation
on GitHub. In interviews with GitHub users, participants
expressed heightened concern regarding impersonation.

2) We also assess the usage patterns of existing best prac-
tices for mitigating impersonation (i.e., commit signing).

3) We illustrate the participants’ perceptions regarding the
impact that impersonation can have on GitHub and
explore potential mitigation strategies based on their
own experiences.

4) We made the first attempt to uncover the possibility and
challenge to detect the impersonation and also provide
guidance for future work.

The remainder of this paper is organized as follows: Section
2 presents a motivating example, Section 3 analyzes related
work, Section 4 describes our research questions, empirical
methods design, and impersonation detection attempt, Section
5 presents the results, Section 6 discusses the implications,
Section 7 discusses limitations, and Section 8 concludes the
paper. We share the interview script and answers from partic-
ipants of this study{'}

II. MOTIVATING EXAMPLE: DOPPELGANGER DEMO

We demonstrate how impersonation can be implemented in
GitHub and can cause security issues through the Doppel-

Uhttps://github.com/zyueek/ICSE25_github

Step 1: The attacker, Eve, gains access
to the email associated with the account |—

. Commit after Impersonation:
of the credible user, Bob

W dataflow_analysis

Step 2: git config --global user.email
“Bob’s email”

Step 3: Eve includes the malicious code
in their commit.

Step 4: Eve pushed the commit that the
displayed author is Bob to his repository.

¥ master ~ ¥ 1Branch © 0 Tags

% Credible-Bob

Fig. 2. A motivating example showing impersonation of a legitimate user.

ganger dem In Figure we assume an attacker, Eve, intends
to introduce malicious code to a repository by impersonating
the identity of a credible developer, Bob.

In Figure 2] we illustrate the process of impersonation.
Initially, Eve finds Bob’s commit history in GitHub and
locates the email associated with his account. Then, Eve uses
the git command git config --global user.email
[Bob’s email] to set her git identity as Bob’s. Eve can
create a fork of the target repository and use the regular push
command to push commits to her fork. Similar to the right
side of Figure |2} the displayed author of the malicious code
is now Bob, even though Eve is the actual contributor of the
code. In this paper, we show participants this process in a
structured interview.

III. RELATED WORK

This section first discusses software vulnerabilities in open-
source software (OSS) and how patches can introduce serious
vulnerabilities in OSS projects. Next, we focus on existing
exploitation of OSS security issues, including metadata vul-
nerabilities and supply chain attacks. Finally, we introduce
the issue of impersonation and user identification problems
on GitHub.

A. Software Vulnerability in OSS

Several existing studies focus on vulnerabilities introduced
by patches in commits. According to research investigating
vulnerability-introducing commits on GitHub, less experi-
enced developers are 1.8 to 24 times more likely to contribute
a vulnerable patch compared to experienced developers [17].
Additionally, over 40% of vulnerabilities are introduced by
new contributors to a repository, a substantially higher rate
than that of original contributors [18]].

Moreover, some commits intentionally introduce malicious
code. For instance, hypocrite commits appear to fix minor
issues, while serious vulnerabilities are in fact introduced [[19]].
Presently, there are recurring attacks targeting open-source
software (OSS) projects aimed at compromising the entire
supply chain [20]. The objective of such attacks is to plant
malicious code into open-source projects, which can then be
executed within downstream projects’ contexts.

2The word doppelginger is German for “double walker;” it commonly
refers to a person who is almost identical to another.

https://github.com/zyueek/ICSE25_github

As the influence of the OSS community grows, vulnerability
commits have a greater impact than ever before. Imperson-
ation, as an internal issue within Git mechanisms, will become
increasingly important in the future.

B. Exploitation in OSS

Much of society’s critical infrastructure and the ability to
innovate depends on the health of OSS [21]. However, security
issues are prevalent in OSS, comprising approximately 3% of
all issues [[22]]. More specifically related to our work, security-
related discussions account for approximately 10% of all dis-
cussions on GitHub [23]]. Exploitations of GitHub commonly
fall into two main categories: Infrastructure Vulnerabilities and
Supply Chain Attacks.

Infrastructure Vulnerabilities includes issues like buffer
overflows, SQL injections, cross-site scripting (XSS), meta-
data manipulation, and remote code execution vulnerabilities
launched against GitHub itself. Morton et al. [24] explored
code-related risks, including buffer overflows and SQL injec-
tions. In addition, a defense scheme that mitigates metadata
manipulation attacks is proposed by maintaining a crypto-
graphically signed log of relevant developer actions [[15].

Supply Chain Attacks include malicious code inserted into
open-source components, which then gets propagated when
other software depends on these components. For instance,
Ohm et al. [25] focus on supply chain issues, especially the
risks tied to malicious code insertion. In addition, Alexopoulos
et al. [26] raised concerns that the openness of OSS might
amplify these issues.

Despite these main categories discussed above, a recent
study [[27]] has provided a review of threat modeling techniques
tailored for OSS, which offers more insights into categorizing
security issues in OSS. However, there is a lack of research
exploring how human developers interact with (or are deceived
within) within OSS contexts.

C. Impersonation issues in OSS

Many OSS security issues are related to identity manage-
ment and cryptography [22]. Git itself also provides some
identity authentication features. One important instance is
commit signing [28]].

However, with a service like GitHub, the server creates a
commit object it cannot sign on behalf of the user, as it lacks
the cryptographic key material needed for the signature. To
improve this, le-git-imate [29]] provides security guarantees
compatible with Git’s standard commit signing mechanism,
which can defend against high-impact attacks on web-based
Git repositories. Another mechanism, push certificates, intro-
duced in version 2.2.0 of Git, allows a user to digitally sign
the reference that points to a pushed object. However, push
certificates are designed for out-of-band auditing. As a result,
push certificates are rarely used in practice.

Despite the importance and challenge of identity authen-
tication using Git, GitHub allows developers to pretend to
use aliases for the commits. In Git, the identity information
attached to each commit, including the name and email address

of the user, is determined by the configurations set by the user
in their local Git environment. To identify the authorship of
code changes (commits) in Open-source repositories, existing
work [30] has found that within around 38 million author IDs,
there are around 14.8 million IDs to have an alias, which
belong to 5.4 million different developers, with the median
number of aliases being 2 per developer.

IV. STUDY DESIGN

Our study comprises two stages to investigate the impact of
impersonation on GitHub: (1) intervention interview and (2)
impersonation detection attempt. Our study seeks to answer
the following research questions:

« RQ1: To what extent are GitHub developers aware of and
concerned about impersonation? How does their percep-
tion change before and after witnessing the Doppelganger
demo?

o« RQ2: How widely is the current general practice (i.e.
commit signing) accepted and used among developers?

« RQ3: To what extent can we detect the potential imper-
sonation on GitHub?

e RQ4: How can GitHub users be safeguarded against
impersonation based on user perception?

A. Intervention Interview

Following best practices in the HCI literature, we con-
duct structured interviews with 17 participants to assess their
awareness and perception of the severity and impact of imper-
sonation on GitHub. We discuss the recruitment, participant
demographics, and interview process in this subsection [31]].
We refer to this as the “intervention interview” because we
show participants a demonstration of GitHub impersonation
and then interview them about their perceptions.

1) Data Collection and Recruitment: We use GitHub’s
REST API to collect user and their commit information from
GitHub [32]. First, we queried the GitHub API using randomly
generated two-letter strings (e.g., ‘ae’) to retrieve lists of
repositories ranked by star count in descending order [33]
and retrieve the 1,000 most starred repositories for each two-
letter string [34]. From 10 batches of such random searches,
we compiled the most-starred projects, resulting in 9,810
unique repositories after removing duplicates. We gathered the
commit history of each repository between July Ist, 2022,
and September 1st, 2022 [34ﬂ Subsequently, we extract
the contributor list for these repositories and retrieve all
the commits made by each contributor during the specified
timeframe [36]. To gather information about each contributor,
we use the contributor event API, which provides insights into
their behavior and activities within the repository [37].

Additionally, the repository commit API allows us to col-
lect comprehensive data on every commit made within the
repository [38]. From the contributor API, we obtain each
contributor’s email address [39], [40]. We reviewed the col-
lected repositories to identify users employing multiple or

3GitHub’s API is both rate limited [35] and precludes automatically
gathering larger amounts of data about each repository.

Github Usage

¥

Github Security or
Privacy Concern

N
o0

Concern Degree
to Impersonation

17 Developers in Github Questions Before Demo

Concern Degree
to Impersonation

. 2

® Demonstrate
impersonating the

participants _ Perception on
® Demo commit » impersonation
O signing ‘v

Suggestion to
Safeguard identity

(v

Doppelganger Demo

Questions After Demo

Fig. 3. A diagram showing our Interview design

unassociated emails (compared to their public GitHub user
email) in unverified commits, resulting in 373 users. Then, we
emailed 373 contributors and finally recruited 17 participants,
with a response rate of 4.6%.

2) Participant Demographics: The demographic informa-
tion is detailed in Table[l] labeled P1 through P17. Participants
include 12 males and 5 females. The participants’ coding
experience ranges from beginners with less than one year to
developers with over five years of experience. The GitHub
usage frequency varies significantly among participants —
6 out of the 17 participants use GitHub nearly every day.
Geographically, the participants primarily contributed from the
United States, China, and Canada.

Moreover, we also grouped our participants based on their
experience and their background for further analysis on indi-
vidual differences in this study. Specifically, we first consider
participants’ prior experience in open-source:

o Novice group: The group includes participants with less
than three years of OSS experience. (P1, P2, P3, P4, P5,
P6, P7, P8, P10, P11, P12, and P16)

« Expert group: The group includes participants with more
than three years of OSS experience and use GitHub every
week. (P9, P13, P14, and P15)

Then, we also consider the participants’ occupations:

o Non-industry group: The group includes participants
who are not working in the computer science industry.
(P4, P7, P13, P14, P15, and P16)

o Industry group: The group includes participants who are
working in the computer science industry. (P1, P2, P3, P5,
P6, P8, P9, P10, P11, and P12)

P17 has previously worked at GitHub and is familiar
with the impersonation process, and provided very insightful
opinions for the study from an internal view (i.e., as a
GitHub employee). Due to P17’s extensive knowledge of OSS
impersonation, we will not include his perspectives in the
general discussion but present his opinions separately in the
discussion section instead.

3) Protocol: We conducted and recorded these interviews
remotely via Zoom, ranging from 25 to 40 minutes per partici-
pant. Three of the authors conducted the interviews. Before the
interview, all participants signed an informed consent form and
completed a demographic survey through email. Participants

were required to be over 18 years of age and express comfort
in communicating in English. Participants were briefed on the
study’s context and purpose. We offer a $20 Amazon gift
card as a participant incentiveﬂ The interview format follows
widely used intervention-based studies [41]], which we lever-
age to understand how participants perceive impersonation on
GitHub.

4) Interview Design: As depicted in Figure[3] our interview
consisted of three steps. First, we asked participants a series
of questions before the demo, including their reasons for using
GitHub, their concerns regarding privacy and security issues,
their awareness of impersonation, and their level of concern
regarding impersonation, without revealing our demo. We also
use a 10-point Likert scale to gauge their degree of concern
regarding impersonation [42].

Next, we presented participants with the Doppelganger
Demo as an intervention. Interviewers share the screen during
the demo, showing the git commands used during imperson-
ation. If a participant is willing to engage actively in this
process, we request their email address solely to demonstrate
impersonation within the context of our study. Then, similar
to the process outlined in Section [} participants will navigate
through the entire impersonation process, and the interviewers
impersonate their identity. Finally, participants observe their
identity displayed in the interviewer’s repository as the commit
author, even though the interviewer wrote and pushed the code.
If participants are unwilling to provide us with their GitHub
email, we will only demonstrate the impersonation process and
will not impersonate them.

After the demo, we asked participants to reassess their level
of concern to determine again if there was a shift. We also
inquired about the perceived influence of impersonation on
GitHub and elicited suggestions from participants on how
developers can safeguard themselves.

5) Qualitative and Quantitative analysis in interview data:
We transcribed the interview conversations into text using
third-party software and conducted inductive thematic analysis
over multiple phrases [43]].

1) First, we remove any irrelevant information, filler words,
or repetitions that do not contribute to the analysis.

4This study is approved by the IRB 231741 from Vanderbilt University

TABLE I
DEMOGRAPHIC INFORMATION OF THE PARTICIPANTS.

1D Sex Education (Completed or Ongoing) Coding Exp OSS Exp Github Usage Occupation Location
P1 Male PhD or higher 3-5 years 1-3 years Almost Every day CS or related field student usS

P2 Male Master’s Degree 1-3 years 1-3 years 2-3 times a week CS or related field student UsS

P3 Male Master’s Degree 5 years or more 1-3 years 2-3 times a month ~ CS or related field student China
P4 Male Bachelor’s Degree 1-3 years 1-3 years 2-3 times a week Software Developer/Engineer ~ US

P5 Male PhD or higher 3-5 years 1-3 years 2-3 times a week CS or related field student [N

P6 Female PhD or higher 3-5 years 1-3 years 2-3 times a week CS or related field student China
P7 Female PhD or higher 3-5 years 1-3 years Almost Every day =~ Machine Learning Engineer China
P8 Female Master’s Degree 3-5 years Below 1 year 2-3 times a month CS or related field student UsS

P9 Male PhD or higher 5 years or more 5 years or more Almost Every day CS or related field student usS

P10 Male PhD or higher 5 years or more 3-5 years 2-3 times a month ~ CS or related field student usS

P11 Female Bachelor’s Degree 3-5 years 1-3 years 2-3 times a month ~ CS or related field student UsS

P12 Male Master’s Degree 3-5 years 1-3 years 2-3 times a month ~ CS or related field student usS

P13 Male Bachelor’s Degree 5 years or more 3-5 years Almost Every day Software Developer/Engineer US

P14 Female Master’s Degree 5 years or more 5 years or more 2-3 times a week Software Developer/Engineer ~ Canada
P15 Male Bachelor’s Degree 5 years or more 5 years or more 2-3 times a week Software Developer/Engineer US

P16 Male Master’s Degree 5 years or more Below 1 year Almost Every day =~ Machine Learning Engineer (8N
P17% Male Bachelor’s Degree 3-5 years 1-3 years Almost Every day Software Developer/Engineer ~ Germany

2) Next, we generate code responses to specific questions
or thematic segments that emerge during the interviews.

3) Subsequently, we assign codes or labels to different
segments based on their content.

4) Finally, we organized the code into meaningful themes.

The theoretical saturation was reached at the 13th participant.
The final codebook in our analysis is available in the artifact
link. For the quantitative data obtained from the Likert scale
in measuring the level of concern towards impersonation,
we conducted a t-test to determine whether there was a
significant difference before and after participants viewed the
Doppelganger Demo.

B. Impersonation Detection Attempt

In this section, we outline our attempt to detect imperson-
ation commits and users. The process includes two key steps:
(1) Crosscheck for impersonation commits, and (2) identify
GitHub users engaged in impersonation.

1) Crosscheck for impersonation commits: During the pro-
cess of impersonating a committer, it becomes challenging
to identify the actual contributor behind a commit directly.
This is because we cannot reliably determine the true author
of a commit. On the commit page, GitHub displays the
impersonated user as the commit user and even provides a
user link to their profile, providing a very convincing view
that the impersonated victim did in fact create the commit.
Similarly, the impersonated user is shown as the login author
in the APL

The true identity of the committer remains undisclosed
in impersonation. However, the commits only occur in the
commit history of the real user and not the displayed user.
Therefore, to address this issue, we collect the commit history
of the repository along with the user’s commit history in
Section By cross-checking these two sets of data,
it becomes possible to identify commits that exist in the
repository history but are not reflected in the displayed user
history.

2) Identify GitHub users engaging in impersonation: After
identifying the commits by crosschecking the repository and

user commit histories, we examine the users responsible for
these commits. By identifying these users, we collect their
entire commit history during the previously discussed period
(Section [[V-AT)). We presume that these users are more likely
to make additional impersonation commits due to their past
involvement. Consequently, a user is expected to have multiple
commit email addresses, as they intentionally disguise their
identity by altering the commit email in their configuration.
However, we note this is not always the case and may result in
false positives as many users legitimately use several different
email addresses.

V. RESULTS

In this section, we present the findings derived from inter-
views and the analysis of GitHub data to address our research
questions.

A. To what extent are GitHub developers aware of and
concerned about impersonation? How does their perception
change before and after witnessing the Doppelganger demo?
(RQI)

Under RQI, the first subquestion focuses on the current
level of awareness and concerns among GitHub developers re-
garding impersonation (i.e., before they learn about it from our
demo). The second subquestion assesses their level of concern
after they learn how easily impersonation can occur. Together,
these two subquestions offer a comprehensive discussion of
participants’ views as their understanding of impersonation
evolves.

1) The perceived security and privacy issues on GitHub:
Before presenting the Doppelganger Demo, we initially in-
quired about the security and privacy issues participants are
aware of on GitHub. At the start of the interview, it became
evident that all participants had been involved in collaborative
projects. Significantly, all contributors expressed happiness
and excitement upon having their commits accepted by open-
source projects. They believe their contributions can help more
developers and eagerly anticipate having their names listed in
influential projects.

TABLE 11
PRIVACY AND SECURITY CONCERNS ON GITHUB

Theme

Description

Representative Example

Participant

No concern

Public key leakage

Personal email leakage

Personal accounts stolen

Project content leakage

The participants have no pri-
vacy or security concerns be-
cause GitHub is the most
renowned open-source project
community.

The participants are worried
about the leakage of sensitive
information, such as specific
API keys, when they release
their code to the public.

The participants are concerned
that their personal email
addresses may be exposed
through the GitHub API’s
commit history.

The participants are concerned
about the possibility of their
accounts being stolen by oth-
ers.

The participants are concerned
that when they work on
GitHub with unreleased
projects, their code might be
leaked.

I don’t see any potential risk in using
the GitHub. (P3)

Sometimes, you don’t even know when
your code will have maybe your API
key. (P2)

I have a several email address. And
so I will divide into personal or just
something for work or for research. 1
think it’s actually okay for me if I use
this email address on my GitHub, it
means that is it just for my research or
for my work. (P9)

Not really, cause I haven’t saw some
account was like still stolen by other
people. (P6)

If I'm currently working on a project
and that project hasn’t yet been
published, I'll probably maintain the
project into a private mode just in case
others could see it. (P10)

P3, P5, P8, P14, P15

P2, P4, P7, P11, P16,
P17

P9, P13

P1, P6

P10, P12

Surprisingly, none of the participants was aware of this
impersonation issue before we brought it to their attention
(excluding P17). P1 believes it is secure after safeguarding
their passwords. He opts for a one-time login using SSH
instead of HTTPS, allowing them to renew the password
with each session. He believes this practice makes it nearly
impossible for attackers to steal their accounts.

When I use GitHub, I usually am logged in, in the
command line, or I usually use SSH whenever it’s
possible. So there’s a command that you can run
to basically check that you’re logged in. And that
whenever I cloned repositories, I use the SSH option
instead of the HTTPS. option. But I don’t really know
anything about how someone could impersonate my
GitHub account unless they had my password or if
they had my phone as well, because I actually have
the one-time password configured. (P1)

Instead, participants did express other security concerns. In
Table [lI} we categorized the concerns of the participants into
five distinct categories: Public Key Leakage, Personal Email
Leakage, Personal Accounts Stolen, Project Content Leakage,
and No Concern. 5 participants did not perceive any security
issues existing in GitHub. Given GitHub’s standing as the
most influential open-source community, they have confidence
that the platform is comprehensively secured. Among the
remaining 11 participants who express security concerns on
GitHub, 6 are apprehensive about the possible public keys
leakage (e.g., API keys) when releasing code to the pub-
lic. Additionally, 2 participants expressed individual concerns
about project content leakage (P10, P12), personal account
theft (P1, P6), and personal email leakage (P9, P13). P9,

in particular, acknowledged the potential for email leakage
and took proactive measures by creating a dedicated email
specifically for GitHub use.

2) Comparing the degree of concern about impersonation
before and after the Doppelganger demo: As discussed above,
we investigate participants’ awareness of security issues as
well as impersonation. Then, treating the Doppelganger Demo
in Section as an intervention, we sought to understand
their reactions to the demo and their overall perception of
impersonation. As described in Section we employ a
Likert scale to gauge participants’ level of concern regarding
impersonation before and after we showed them the Doppel-
ganger Demo. We use a scale of 1 to 10, where 10 reflects
the highest level of concern and 1 indicates little concern. In
Figure E} we illustrate their degree of concern, we observe that,
except for P14, all participants showed an increase in concern
following the demo. The average level of concern increased
from 3.9 to 7.3, and the median value rose from 3 to 7.25. With
a t-test, we found t =-4.24, p < 0.001, indicating a significant
difference in concern levels before and after the intervention.

Interestingly, this difference also varies based on the par-
ticipants’ experiences as shown in Figure [5} The novice and
Expert groups showed a similar degree of concern before the
demo (4.1 vs. 3.3), but the Novice group was more worried
after the demo (7.9 vs. 5.5). The difference in concern levels
was more pronounced between industry and non-industry
participants. The average concern level of the industry group
before the demo is 2.67, compared to 4.6 for the non-industry
group. After the demo, the average concern levels increase
to 6.08 for the industry group and 8.05 for the non-industry
group. Though the concern level comparison did not survive
the statistical test (p = 0.06), industry professionals generally

0.200 1

Degree of Concern Before Demo
Degree of Concern After Demo
== Median Before Demo: 3.00

== Median After Demo: 7.25
0.175

-

-

0.150

0125/

0.100

Density

0.075

0.050

0.025

N

(I Sy S ———
/

0.000

4 5 6 7 8
Degree of Concern

10

2 9
Not really concerned Extremely concerned

Fig. 4. The distribution of the degree of concern before and after the
Doppelganger Demo. The delta indicates the median degree of concern,
which saw a significant increase after participants viewed the demo (t=-4.24,
p < 0.001).

exhibit lower concern towards impersonation. This might be

because of the stricter identity verification processes in the
industry and the prevalence of proprietary code libraries in
large companies, reducing reliance on GitHub, while non-
industry individuals face higher risks of impersonation due
to less stringent identity verification requirements.

Concern for impersonation before the Doppelganger
Demo. Among all participants, 6 expressed the belief that
impersonation is uncommon, unlikely to occur, and not a
significant concern for them (P1, P3, P9, P11, P12, P14).
Their rationale for this perspective is rooted in the belief that
faking an identity would require a considerable investment of
resources or time, making it an impractical pursuit for the
average user. Additionally, they believe that influential users,
in particular, typically benefit from robust protection measures
for their GitHub accounts. Interestingly, 3 other participants
agree that the user identity leak only affects influential de-
velopers compared to the normal one (P2, P4, P7). They
perceive identity leaks among normal users as unlikely to yield
significant risks. Given that normal users typically have fewer
contributions to fundamental projects, even if someone were to
impersonate them, the potential for causing substantial harm is
considered minimal. One participant has claimed if it is easy
to pretend to be other the Github is an unsafe open-source
community (P6).

Overall, before our demonstration, 12 out of 16 participants
expressed a certain level of concern about impersonation, a
higher proportion compared to the 11 out of 16 participants
who acknowledged security issues on GitHub. Among these,
3 participants believed that impersonation primarily affects
influential developers, while another 4 thought it had the po-
tential to diminish the reputation of all users. One participant
even expressed the belief that every project is unsafe. The
majority of participants promptly view impersonation as a
security concern upon acknowledging its potential existence

[0 Industry: Degree of Concern Before Demo [=) Non-Industry: Degree of Concern Before Demo

@23 Industry: Degree of Concern After Demo £2223 Non-Industry: Degree of Concern After Demo

0.175
0.150

0.125

ity

Densi

0.100

0.075

0.050

0.025

0.000
1 2 5 6 9 10

Not really concerned Degree of Concern Extremely concerned

Fig. 5. The comparison between the degree of concern before and after
the Doppelganger Demo for industry and non-industry participants. (t=-1.96,
p = 0.06)

on GitHub, although they may not perceive it as highly severe.

The concern for impersonation after demo After showing
our Doppelganger demo to guide participants through the
entire impersonation process, we inquire about their attitudes
towards impersonation again. Participants’ attitudes underwent
a significant shift after witnessing our impersonation demo.
7 participants who initially considered impersonation as
uncommon or only relevant to influential developers (P2,
P4, PS5, P6, P7, P8, P11) now perceive impersonation as
more harmful than they had initially expected.

From the participant’s view after the Doppelganger demo,
10 participants viewed impersonation as a significant issue due
to its ease of reproduction, requiring only 3—4 git commands
familiar to every developer. Participants even expressed suspi-
cion about whether we used additional tools in the demonstra-
tion (P9). Additionally, participants emphasized that attackers
do not even need to know one’s password and impersonation
is unexpectedly easy.

Also, 4 participants expressed shock after witnessing the
demo, emphasizing their surprise that individuals could even
access the link to the displayed author (P2, P9, P13, P16). Fur-
thermore, 2 participants suggested that the entire Git system
should be enhanced to prevent the occurrence of impersonation
(P4, P5). Finally, 2 participants expressed confusion regarding
the existence of a serious vulnerability on GitHub, questioning
why the identity of every user would be entirely public (P6,
P14).

Furthermore, the participants also shared with us their
opinions about how impersonation could influence the GitHub
community. Table [T] presents the themes and representative
examples from the interview results. 5 participants perceive
impersonation as posing risks to the reliability and safety
of the entire platform. They believe impersonation introduces
challenges for the system to accurately identify commit con-
tributions, which forms the foundation of the open-source
community. At times, developers can unfairly add other people
to the contributor list by using their email, which is not fair
to genuine contributors:

TABLE III

THE INFLUENCE TO GITHUB WITH INTERVIEWEE’S OPINION

Theme

Description

Representative Example Participant

Open-Source-Software Educa-
tion Integrity

Reduced trust in collaboration

Risky reliability and safety

User Sabotage

Project Sabotage

For students, someone might
submit low-quality code using
the names of those they dislike
to sabotage their performance
on the project.

The misuse of GitHub identi-
ties causes developers to doubt
the suggestions and code con-
tributions of their collabora-
tors.

The entire GitHub platform
will be affected because it’s
now difficult to determine the
true author of the commit.
For developers, someone could
submit low-quality work using
another person’s identity to di-
minish their credit in the work-
place.

The attackers can impersonate
a main contributor of an open-
source project and submit mal-
ware, which may be easily ac-
cepted.

They have your email and that thing will be this whole — P2
thing will be true. They can just easily pretend to be you

and I'll post some random s***. So I random trash up

to the code. (P2)

P1, P8, P10, P11,
P13, P14

I think it’s also like you showed it can be misused,
where someone could push out a bunch of commits to
different repositories, but it’s not actually the commits
that they’re, they’re associated with a different identity
than the person that’s making the commit. So I think
there’s an opportunity to basically make a coder look
bad by pushing bad code using their email. Or you can
basically have someone take credit for work that you’ve
done. (P1)

It might affect the integrity of commit attribution and
make it challenging to accurately identify and verify
computers. Potentially impacting collaboration and reli-
ability of the platform. (P8)

In my work they can pretend to be me and publish a P7
very bad code on company report and to make me, like,
maybe have a bad code quality and they have some of
fake news about me like I did badly by showing such fake
information and it’s fake in history. (P7)

1 think since impersonation may be misused by some like
will like your will that attackers that they may pretend
to be you and commit something that you don’t want
to happen to. Some open source project if it is critical
like fundamental component or belief system or other
fundamental systems and if you were believed to be the
programmer and have committed something, probably
you will have trouble of it. So yeah, this definitely involves

P6, P8, P9, P10,
P16

P2, P3, P4, P12,
P15

more potential security issues. (P4)

Collaborator contributes to this repository and use
others, like account, which means others’ names will
also be a list of the contributors, but they actually
didn’t do anything for this repository. So I don’t think
it’s very like it’s been fair to the contributor itself.
(P6)

5 participants expressed concern about project sabotage,
where attackers could submit pull requests with malicious code
to an open-source project by posing as a senior contributor.
Typically, project owners tend to place more trust in developers
they already know and may not thoroughly review the code
contributions. If an attacker successfully impersonates such a
trusted person, there is a higher likelihood that malicious code
could be accepted and merged into the project. Participants
also believe that it could make the entire community less
active.

Furthermore, 6 participants believe that impersonation is
likely to reduce trust in collaboration within the open-
source community. In a GitHub project, if contributors can
easily impersonate others, determining the true originator of a
commit becomes challenging, which undermines the trust in
the collaborative process. There is a risk associated with using
a credible developer’s identity to submit vulnerable code to a
repository.

A participant highlights that impersonation could potentially
create issues in their school projects as user sabotage. In com-
puter science courses, certain assignments require submission

via GitHub to the professor. If someone can impersonate others
and intentionally submit a code of poor quality, the student
being impersonated may receive a lower grade. Typically,
students use their school email as their associated email on
GitHub, making impersonation even easier. Furthermore, one
participant is concerned about the impact of impersonation
in the industry. In some teams, the quality of code is used
to assess a developer’s performance. If someone maliciously
impersonates others and publishes low-quality code, their
performance evaluation could be unfairly downgraded.
According to the participants’ perspectives, impersonation
has a diverse range of impacts on GitHub. It diminishes
the reliability of the entire platform and hampers collabo-
ration between developers. Furthermore, both students and
developers can be adversely affected by the malicious act of
impersonating and submitting low-quality code.

Surprisingly, none of the participants were aware of
impersonation before the interview. The majority of
them underestimated the severity before the Doppelganger
Demo; however, their concern levels increased after walk-
ing through the impersonation process.

B. How widely is the current general practice (i.e. commit
signing) accepted and used among developers? (RQ2)

In this section, we investigate participants’ perspectives on
practices like commit signing to verify the user identity asso-

Update README.md
& octocat committed on Sep 2, 2022

© A bk

Fig. 6. An Example of a verified commit: Once a GitHub user enables commit
signing and uses ’git commit -S -m,” their commits will be marked as verified.

ciated with GitHub commits. Commit signing is a feature on
GitHub designed to verify that a commit is made by a specific
uselﬂ This process entails associating the cryptographic GPG
(GNU Privacy Guard) key with the user’s git client.

Despite the appearance that commit signing eliminates
impersonation, it has several shortcomings in practice. Firstly,
as many as 56% of the collected commits in our dataset have
not been verified, even within larger and more influential
projects. Additionally, commit signing is associated with a
private key, but it does not prevent other developers from
pretending to be the verified author. The distinction lies in
the fact that impersonated commits would lack the “verified”
label. In our interview, 3 participants who have used commit
singing previously mentioned that commit signing introduces
additional steps during the committing process, and generating
a GPG key is not convenient for novice programmers or users
who infrequently commit with different local machines.

I sometimes work on like public workspace. So if
I want to try to commit something on it, it must
may not be verified, right? Or even I'm working
on a virtual machine. And each time to open a
random one? That how can I get myself verified?
I have to maintain like much keys. It’s more like too
complicated to manipulate these things to configure
out of things for each day when I tried to set a quick
commit or something. (P12)

We examined the usage of commit signing among all
participants. Out of 17 participants, only 6 had a precise
understanding of what commit signing is and how to employ
it. Among these individuals, 5 had prior experience with
commit signing. Interestingly, following our discussion on
impersonation, 9 participants who had never used commit
signing expressed a willingness to adopt them in the future,
despite acknowledging their imperfections, as commit signing
is the only current mitigation to impersonation.

I will use it. I think it’s parts like part of the problem
but as you see that it can’t really deny, really stops
impersonate. (P8)

However, among 5 developers who had previously used com-
mit signing, 3 indicated that they would not use it in the future
unless repositories require compulsory verification due to the
extra effort on key management.

SThe example comes from |https://docs.github.com/en/authentication/
managing-commit-signature- verification/signing-commits, as shown in Fig-

ure @

Over half of the commits in our dataset were not signed.
The majority of our participants had not used commit
signing before (9/16), and among those who had, some
chose not to continue using them due to the effort involved
in key management.

C. To what extent can we detect the potential impersonations
on GitHub? (RQ3)

Given that many developers view impersonation on GitHub
as a significant concern, and recognize that the existing au-
thentication method of commit signing does not fully mitigate
this problem, an approach to distinguish between genuine and
impersonated commits does not exist. The GitHub mechanism
does not guarantee that the commit author is definitively the
displayed author. As shown in Figure during commit
merges, the individual who merges multiple commits into
the branch is designated as the displayed author for all
changes, even if they were not the ones directly editing
the code. Consequently, when primary contributors merge pull
requests into the main repository, they are also listed as the
displayed author for all commits. Thus, certain instances in
pull requests resemble impersonation, making it challenging
to discern authentic impersonation from merge commits in a
fork to a pull request.

Moreover, we explore the possibility of detecting imperson-
ation by applying the Crosscheck algorithm to find the commit
that existed in the repository event but not in the displayed user
event in Section [V-Bl

|:| Displayed Committer:A = _ = Displayed Committer:D
L.,
Pull
Request

Fork of User A Repository of User D

Fig. 7. The illustrated example shows the challenge of distinguishing between
impersonated and authentic pull requests.

As outlined in Section [[V-A1} we collect commits from the
highest-starred repositories by searching random keys. Out
of our 9,810 repositories on GitHub, we have accumulated
a total of 12,577,332 commits and have documented the
commit history of 172,587 users. Among these users, 5,447
individuals have made commits using more than one email
address, comprising approximately 3.16% of the total user
count. We have uncovered several interesting findings within
the total of 131,184 suspicious commits. Notably, 16,420
commits originate from large companies (e.g., Google, Meta),
4,665 commits come from organizational emails, and 1,666
commits are associated with educational emails. Additionally,
120 commits are linked to government emails. These results
indicate a correlation between organizational collaboration
behavior and impersonation.

https://docs.github.com/en/authentication/managing-commit-signature-verification/signing-commits
https://docs.github.com/en/authentication/managing-commit-signature-verification/signing-commits

The Git mechanism for displaying commit authors is
the same for both authentic pull requests and imperson-
ation. Thus, there is no approach yet to accurately and
precisely detect the impersonation behavior.

D. How can GitHub users be safeguarded against imperson-
ation from user perceptions? (RQ4)

As previously discussed, impersonation may have a broader
impact than initially perceived by GitHub users and there is
currently a lack of effective detection methodology for GitHub
impersonation. Therefore, addressing how to safeguard GitHub
users and mitigate the effects of identity leaks becomes a
crucial concern. In this section, we summarize participants’
opinions on this matter, discussing potential measures that
can be taken to mitigate impersonation. The opinions from
the industry and non-industry groups do not differ. However,
the Expert and Novice group focuses on different types of
solutions. We present the opinions from both groups to pro-
vide a comprehensive view of how GitHub users would do
to safeguard themselves on impersonation, considering their
different levels of experience.

Participants in the Expert group, who are familiar with var-
ious GitHub functions, offered suggestions based on existing
GitHub commit features:

o Default vigilant mode The Vigilant mode in GitHub
can alert users to all commits linked to their account
(P13). However, the default setting for Vigilant mode is
off. When Vigilant mode is activated, every developer
can receive notifications if their identity has been used
elsewhere.

o Compulsory commit signing policy GitHub could man-
date commit signing as a default setting for all commits.
This would ensure that all commits are authenticated, pre-
venting users from using other people’s email addresses
(P13, P14, P16). However, implementing this approach
necessitates developers to generate keys on all their local
machines.

Participants in the Novice group offered suggestions that
are innovative and extend beyond existing GitHub functions:

o Use the public key in commit signing The participants
advocate for GitHub to enhance the current commit
signing feature by integrating a public key (P4, P10).
This improvement aims to deny access without introduc-
ing additional verification steps, specifically when other
individuals attempt to use the email of a verified user.

o Use specific keys in commit message Another partici-
pant proposes that committers leverage a specific commit
message, established by the repository owner, as a way of
verifying identity (P1, P12). In this approach, the repos-
itory owner gains the ability to confirm the true identity
of the contributor using the designated commit message,
posing a challenge for potential attackers attempting to
impersonate an existing collaborator.

« Call for GitHub to raise user’s security awareness A
participant expresses the desire for GitHub to officially
disclose potential risk vulnerabilities, including imperson-
ation (P5).

Although some of the perceptions from participants may
not be rigorously verified, they can still provide insights into
features that could help detect impersonation. Participants in
the Novice group proposed more inspiring mitigation strate-
gies that are not currently present in GitHub’s mechanisms.
Conversely, the Expert group provided more technical sugges-
tions, focusing on improvements to existing functions. In the
discussion section, we elaborate on strategies to mitigate the
influence of these factors and explore reasons why GitHub has
not addressed this issue.

VI. DISCUSSION

In our discussion, we delved deeper into the impact of
impersonation on OSS, GitHub’s official treatment of imper-
sonation since its awareness of its existence several years ago,
and strategies for mitigating this behavior without disrupting
the original function of OSS.

The impact of impersonation on OSS Two years ago,
there was a noteworthy (albeit humorous) incident involving
Linus Torvalds’ GitHub identity, where it was claimed that he
would delete the entire Linux system [44]). This real-world
example illustrates how impersonation can be used to deceive
even renowned developers. Besides impersonating influential
developers to make headlines, impersonation can also happen
discreetly across a broader spectrum of repositories. From
injecting malware into a project under a main developer’s
identity to pushing low-quality code using other individuals’
accounts to undermine their reputation, impersonation could
potentially have a substantial impact, and detecting the real
committer within the Git mechanism is challenging.

GitHub’s stance on impersonation. GitHub has officially
acknowledged the presence of impersonation and has included
impersonation as prohibited content or activity in its site
policy [45]. The Git configuration is flexible, allowing any
developers to use other people’s identities because GitHub
considers it convenient for several contributors to share credit
for their commits (P17).

However, existing mechanisms are unable to definitively
determine the true user behind a commit. Technically, iden-
tifying violations of user identity can only depend on the
assumption that malicious commits are not made by any
legitimate developers on GitHub.

Ways to mitigate impersonation While commit signing
may appear to offer a solution for the impersonation issue,
60% of our participants who have used commit signing
before stated that they would not consider using it unless
required by a project. Impersonation may be more problematic
among influential and highly active developers. However,
these individuals often face challenges in managing keys for
signing commits, particularly because they may use several
local or remote machines. Additionally, implementing email
authentication for every commit presents challenges, especially

when multiple contributors share credit for a commit or pull
request that entails multiple email addresses.

Presently, the push event of a pull request mirrors imper-
sonation through the use of other people’s email addresses
— a pull request may contain commits made by others, a
natural consequence of the git architecture. It is essential
to prioritize the detectability of impersonation rather than
manually policing for such events. For instance, in the GitHub
API, instead of solely displaying information based on the
Git configuration from the committer, it can include the ID
for each Git client to identify the individuals who push the
commit.

Implications for future work: Our study represents the first
investigation into the occurrence of impersonation and devel-
opers’ attitudes towards it. Currently, impersonation behaviors
are not automatically detected. We aim for our study to provide
insights for future research. For developers, we hope to raise
awareness about identity verification issues in the open-source
community and practical strategies to mitigate risks within the
current development ecosystem. Researchers need to further
explore how impersonation influences open-source software
(OSS) and potential mechanisms within Git to mitigate these
issues while maintaining flexibility.

VII. LIMITATIONS

As the first work on investigating impersonation on GitHub,
our study has multiple limitations. In our qualitative study, we
encountered potential biases that may affect the validity and
generalizability of our findings. We discuss each below.

Recruitment Biases: In our recruitment process, we select
developers from repositories based on our selection strategy,
which involves choosing from the top 1,000 most-starred
repositories across ten searches using randomly generated two-
letter strings. Participants are selected only if they have com-
mitted to one of these repositories. This approach introduces
bias because the majority of participants are not relatively
novice programmers, as they have already committed to these
repositories. Our methodology of using the GitHub Search
API with random two-letter strings may have yielded smaller
repositories with few stars or whose contributors were more
novices compared to other individuals in the participant cohort.
Overall, our participant pool may not represent the whole
population in the GitHub community, which might lead to
issues with generalizing our findings.

Response Biases: A social desirability effect may occur
during the interview, especially as we introduce the Doppel-
ganger demo. Consequently, participants may feel compelled
to express their concerns about impersonation as a result of
our mentioning it. It could be possible that the impact on
participants’ views of impersonation was impacted by the fact
that we were confronting them about it.

Furthermore, our results and discussion on potential safe-
guarding mechanisms against impersonation are based on our
participants’ views, who might not have a comprehensive
background on effective defense strategies for the open source
community, which might largely limit the insights for future

work on impersonation detection and defense. We hope our
current report from GitHub users can initiate more future work
to further explore solutions to prevent GitHub impersonation,
and indicate candidate designs of such defense that might be
easily adopted by GitHub users.

VIII. CONCLUSION

In our study, we conducted the first study to investigate
impersonation in GitHub. This security issue allows users to
easily pretend to be other developers by committing with just
a few Git commands to configure a different email.

We conducted interviews with developers in GitHub. The
interviews revealed that most of the participants were unaware
of the impersonation issue before our investigation. When
mentioning the possibility of impersonation, over half of the
participants initially perceived it as not having significant
security issues. However, after showing them a demonstration
of impersonation, most of the participants recognized it as
a serious vulnerability. This highlights that the severity of
impersonation is often underestimated or even neglected by
GitHub users.

We also examined the adoption of the current mitigation
practice, known as commit signing, to mark commits as
verified using cryptography. Our evaluation of its usage in our
dataset revealed that 56% of commits do not have verification.
Moreover, during our interviews, fewer than one-third of the
participants were familiar with commit signing before our
discussions. Over half of the participants who had previously
used it did not plan to use it in the future unless required, and
they highlighted several shortcomings associated with it.

Additionally, we determined that filtering out malicious
impersonation from multi-email commits is not currently fea-
sible. The impersonation behavior remains undetectable due to
its similarity to pull requests. We developed an algorithm to
detect potential identity leaks, analyzing 12.5 million commits
across 9810 public repositories. Our findings revealed that
0.6% of commits and 3.16% of users were implicated in mis-
matches between the displayed author and code author. All of
these instances have the potential to be cases of impersonation,
but we cannot automatically determine whether they are true
instances of impersonation or legitimate coincidences of the
git architecture.

In summary, impersonation on GitHub has a broader and
more serious impact than anticipated according to our partici-
pants. We hope that GitHub can officially address and improve
the identified issues, whether through enhancements to signing
commits or the addition of email configuration authentication.

IX. ACKNOWLEDGMENT

This work was supported by the National Science Foun-
dation (NSF) under grant CCF-2211429. Partial support was
provided by the NSA Science of Security program, the ARPA-
H program, and NSF award 2312057. The authors thank these
organizations for their support.

[1]
[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

R. Naraine, “Open-source proftpd hacked, backdoor planted in source
code,” 2010.

A. Zagalsky, J. Feliciano, M.-A. Storey, Y. Zhao, and W. Wang,
“The emergence of github as a collaborative platform for education,”
in Proceedings of the 18th ACM conference on computer supported
cooperative work & social computing, 2015, pp. 1906-1917.

A. Lima, L. Rossi, and M. Musolesi, “Coding together at scale: Github
as a collaborative social network,” in Proceedings of the international
AAAI conference on web and social media, vol. 8, no. 1, 2014, pp.
295-304.

Y. Hu, S. Wang, Y. Ren, and K.-K. R. Choo, “User influence analysis
for github developer social networks,” Expert Systems with Applications,
vol. 108, pp. 108-118, 2018.

G. B. Alves, M. A. Brandiao, D. M. Santana, A. P. C. da Silva, and
M. M. Moro, “The strength of social coding collaboration on github,”
pp. 247-252, 2016.

A. Begel, J. Bosch, and M. Storey, “Social networking meets software
development: Perspectives from github, msdn, stack exchange, and
topcoder,” IEEE Software, vol. 30, pp. 52-66, 2013.
Customizing git - git configuration. [Online]. Available:
//git-scm.com/book/en/v2/Customizing- Git-Git-Configuration
Izoologic. (2022) Attackers target developers by impersonating
github commits metadata. Accessed: February 21,
2024. [Online]. Available: https://izoologic.com/region/us/
attackers-target-developers-by-impersonating- github-commits-metadata/
GitHub. (2023) Security alert: Social engineering cam-
paign targets technology industry employees. [Online]. Avail-
able: https://github.blog/2023-07-18-security-alert-social-engineering-/
/campaign-targets-technology-industry-employees/

(August 2023) Impersonation attacks target github developers. Univer-
sity of California, San Francisco (UCSF). [Online]. Available: https:
/fit.ucst.edu/aug-2023-impersonation-attacks-target- github-developers

Y. Acar, C. Stransky, D. Wermke, M. L. Mazurek, and S. Fahl, “Security
developer studies with github users: Exploring a convenience sample,”
in Thirteenth Symposium on Usable Privacy and Security, 2017, pp.
81-95.

R. Feng, Z. Yan, S. Peng, and Y. Zhang, “Automated detection of
password leakage from public github repositories,” in Proceedings of
the 44th International Conference on Software Engineering, 2022, pp.
175-186.

B. Lazarine, S. Samtani, M. Patton, H. Zhu, S. Ullman, B. Ampel,
and H. Chen, “Identifying vulnerable github repositories and users
in scientific cyberinfrastructure: An unsupervised graph embedding
approach,” in 2020 IEEE International Conference on Intelligence and
Security Informatics (ISI). 1EEE, 2020, pp. 1-6.

H. Afzali, S. Torres-Arias, R. Curtmola, and J. Cappos, “le-git-imate:
Towards verifiable web-based git repositories,” in Proceedings of the
2018 on Asia Conference on Computer and Communications Security,
2018, pp. 469-482.

S. Torres-Arias, A. K. Ammula, R. Curtmola, and J. Cappos, “On
omitting commits and committing omissions: Preventing git metadata
tampering that (re) introduces software vulnerabilities.” in USENIX
Security Symposium, 2016, pp. 379-395.

Github impersonation - acceptable use policies. [Online]. Avail-
able: https://docs.github.com/en/site- policy/acceptable-use-policies/
github-impersonation

A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni, “Identifying
the characteristics of vulnerable code changes: An empirical study,” in
Proceedings of the 22nd ACM SIGSOFT international symposium on
foundations of software engineering, 2014, pp. 257-268.

A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda, M. Mokary,
and B. Spates, “When a patch goes bad: Exploring the properties
of vulnerability-contributing commits,” in 20/3 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement.
IEEE, 2013, pp. 65-74.

Q. Wu and K. Lu, “On the feasibility of stealthily introducing vulnera-
bilities in open-source software via hypocrite commits,” Proc. Oakland,
2021.

P. Ladisa, H. Plate, M. Martinez, and O. Barais, “Sok: Taxonomy
of attacks on open-source software supply chains,” in 2023 [EEE
Symposium on Security and Privacy (SP). 1EEE, 2023, pp. 1509-1526.

https:

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

(35]

[36]

(371

S. Amreen, B. Bichescu, R. Bradley, T. Dey, Y. Ma, A. Mockus,
S. Mousavi, and R. Zaretzki, “A Methodology for Measuring FLOSS
Ecosystems,” in Towards Engineering Free/Libre Open Source Software
(FLOSS) Ecosystems for Impact and Sustainability, B. Fitzgerald,
A. Mockus, and M. Zhou, Eds. Singapore: Springer Singapore,
2019, pp. 1-29. [Online]. Available: $http://link.springer.com/10.1007/
978-981-13-7099-1_1%

M. Zahedi, M. Ali Babar, and C. Treude, “An empirical study of security
issues posted in open source projects,” in Proceedings of the 51st Hawaii
International Conference on System Sciences, 2018.

D. Pletea, B. Vasilescu, and A. Serebrenik, “Security and emotion:
sentiment analysis of security discussions on GitHub,” in Proceedings
of the 11th Working Conference on Mining Software Repositories.
Hyderabad India: ACM, May 2014, pp. 348-351. [Online]. Available:
https://dl.acm.org/doi/10.1145/2597073.2597117

M. Morton, J. Werner, P. Kintis, K. Snow, M. Antonakakis, M. Poly-
chronakis, and F. Monrose, “Security Risks in Asynchronous Web
Servers: When Performance Optimizations Amplify the Impact of Data-
Oriented Attacks,” in 2018 IEEE European Symposium on Security and
Privacy (EuroS&P), Apr. 2018, pp. 167-182.

M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s Knife
Collection: A Review of Open Source Software Supply Chain Attacks,”
Detection of Intrusions and Malware, and Vulnerability Assessment, vol.
12223, pp. 23-43, Jun. 2020.

N. Alexopoulos, M. Brack, J. P. Wagner, T. Grube, and M. Miihlhéuser,
“How long do vulnerabilities live in the code? a {Large-Scale} empirical
measurement study on {FOSS} vulnerability lifetimes,” in 31st USENIX
Security Symposium (USENIX Security 22), 2022, pp. 359-376.

“An Analysis of Open-source Automated Threat Modeling
Tools and Their Extensibility from Security into Privacy,”
https://www.usenix.org/publications/loginonline/analysis-open-source-
automated-threat-modeling-tools-and-their, Feb. 2022.
“Signing commits.” [Online].
https://ghdocs-prod.azurewebsites.net/en/authentication/
managing-commit- signature- verification/signing-commits
H. Afzali, S. Torres-Arias, R. Curtmola, and J. Cappos, “le-git-imate:
Towards Verifiable Web-based Git Repositories,” in Proceedings of
the 2018 on Asia Conference on Computer and Communications
Security, ser. ASIACCS ’18. New York, NY, USA: Association
for Computing Machinery, 2018, pp. 469-482. [Online]. Available:
https://dl.acm.org/doi/10.1145/3196494.3196523

T. Fry, T. Dey, A. Karnauch, and A. Mockus, “A Dataset and an
Approach for Identity Resolution of 38 Million Author IDs extracted
from 2B Git Commits,” in Proceedings of the 17th International
Conference on Mining Software Repositories, ser. MSR *20. New York,
NY, USA: Association for Computing Machinery, 2020, pp. 518-522.
[Online]. Available: https://dl.acm.org/doi/10.1145/3379597.3387500

I. Richter, F. Raith, and M. Weber, “Problems in agile global software en-
gineering projects especially within traditionally organised corporations:
[an exploratory semi-structured interview study],” in Proceedings of the
Ninth International C* Conference on Computer Science & Software
Engineering, 2016, pp. 33-43.

“GitHub REST API Documentation,” https://docs.github.com/en/rest?
apiVersion=2022-11-28| accessed: March 20, 2025.

Github, “Use the rest api to search for specific items on github,”
GitHub Docs, 2022. [Online]. Available: https://docs.github.com/en/
rest/search?api Version=2022-11-28

B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study
of programming languages and code quality in github,” in Proceedings
of the 22nd ACM SIGSOFT international symposium on foundations of
software engineering, 2014, pp. 155-165.

Github, “Use the rest api to check your current rate limit status,”
GitHub Docs, 2022. [Online]. Available: https://docs.github.com/en/
rest/rate- limit?apiVersion=2022- 11-28#about-rate- limits

“List repository contributors,” GitHub Docs, 2022. [On-
line]. Available: https://docs.github.com/en/rest/repos/repos?apiVersion=
2022-11-28#list-repository-contributors

, “Use the rest api to interact with github events,” GitHub
Docs, 2022. [Online]. Available: https://docs.github.com/en/rest/activity/!
events?api Version=2022-11-28

——, “Use the rest api to interact with commits,” GitHub Docs, 2022.
[Online]. Available: https://docs.github.com/en/rest/commits/commits?
apiVersion=2022-11-28

Available:

https://git-scm.com/book/en/v2/Customizing-Git-Git-Configuration
https://git-scm.com/book/en/v2/Customizing-Git-Git-Configuration
https://izoologic.com/region/us/attackers-target-developers-by-impersonating-github-commits-metadata/
https://izoologic.com/region/us/attackers-target-developers-by-impersonating-github-commits-metadata/
https://github.blog/2023-07-18-security-alert-social-engineering-//campaign-targets-technology-industry-employees/
https://github.blog/2023-07-18-security-alert-social-engineering-//campaign-targets-technology-industry-employees/
https://it.ucsf.edu/aug-2023-impersonation-attacks-target-github-developers
https://it.ucsf.edu/aug-2023-impersonation-attacks-target-github-developers
https://docs.github.com/en/site-policy/acceptable-use-policies/github-impersonation
https://docs.github.com/en/site-policy/acceptable-use-policies/github-impersonation
$http://link.springer.com/10.1007/978-981-13-7099-1_1$
$http://link.springer.com/10.1007/978-981-13-7099-1_1$
https://dl.acm.org/doi/10.1145/2597073.2597117
https://ghdocs-prod.azurewebsites.net/en/authentication/managing-commit-signature-verification/signing-commits
https://ghdocs-prod.azurewebsites.net/en/authentication/managing-commit-signature-verification/signing-commits
https://dl.acm.org/doi/10.1145/3196494.3196523
https://dl.acm.org/doi/10.1145/3379597.3387500
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://docs.github.com/en/rest/search?apiVersion=2022-11-28
https://docs.github.com/en/rest/search?apiVersion=2022-11-28
https://docs.github.com/en/rest/rate-limit?apiVersion=2022-11-28#about-rate-limits
https://docs.github.com/en/rest/rate-limit?apiVersion=2022-11-28#about-rate-limits
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#list-repository-contributors
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#list-repository-contributors
https://docs.github.com/en/rest/activity/events?apiVersion=2022-11-28
https://docs.github.com/en/rest/activity/events?apiVersion=2022-11-28
https://docs.github.com/en/rest/commits/commits?apiVersion=2022-11-28
https://docs.github.com/en/rest/commits/commits?apiVersion=2022-11-28

[39]

[40]

[41]

[42]

[43]

[44]

[45]

M. Endres, K. Boehnke, and W. Weimer, “Hashing it out: A survey
of programmers’ cannabis usage, perception, and motivation,” in Pro-
ceedings of the 44th International Conference on Software Engineering,
2022, pp. 1107-1119.

Y. Huang, D. Ford, and T. Zimmermann, “Leaving my fingerprints:
Motivations and challenges of contributing to oss for social good,” in
2021 IEEE/ACM 43rd International Conference on Software Engineer-
ing (ICSE). 1IEEE, 2021, pp. 1020-1032.

M. Wahl, J. Kriiger, and J. Frommer, “Users’ sense-making of an affec-
tive intervention in human-computer interaction,” in Human-Computer
Interaction. Novel User Experiences: 18th International Conference,
HCI International 2016, Toronto, ON, Canada, July 17-22, 2016.
Proceedings, Part Il 18. Springer, 2016, pp. 71-79.

J. Dawes, “Do data characteristics change according to the number of
scale points used? an experiment using 5-point, 7-point and 10-point
scales,” International journal of market research, vol. 50, no. 1, pp.
61-104, 2008.

J. Fereday and E. Muir-Cochrane, “Demonstrating rigor using thematic
analysis: A hybrid approach of inductive and deductive coding and
theme development,” International journal of qualitative methods, vol. 5,
no. 1, pp. 80-92, 2006.

Sobyte. (2022) Linus play a trick of github vulner-
ability. [Online]. Available: https://www.sobyte.net/post/2022-01/
linus-play-a-trick- of- github- vulnerability/

GitHub. (n.d.) Github impersonation. Accessed: February 21,
2024. [Online]. Available: |https://docs.github.com/en/site-policy/
acceptable-use-policies/github-impersonation

https://www.sobyte.net/post/2022-01/linus-play-a-trick-of-github-vulnerability/
https://www.sobyte.net/post/2022-01/linus-play-a-trick-of-github-vulnerability/
https://docs.github.com/en/site-policy/acceptable-use-policies/github-impersonation
https://docs.github.com/en/site-policy/acceptable-use-policies/github-impersonation

	Introduction
	Motivating Example: Doppelganger Demo
	Related Work
	Software Vulnerability in OSS
	Exploitation in OSS
	Impersonation issues in OSS

	Study Design
	Intervention Interview
	Data Collection and Recruitment
	Participant Demographics
	Protocol
	Interview Design
	Qualitative and Quantitative analysis in interview data

	Impersonation Detection Attempt
	Crosscheck for impersonation commits
	Identify GitHub users engaging in impersonation

	Results
	To what extent are GitHub developers aware of and concerned about impersonation? How does their perception change before and after witnessing the Doppelganger demo? (RQ1)
	The perceived security and privacy issues on GitHub
	Comparing the degree of concern about impersonation before and after the Doppelganger demo

	How widely is the current general practice (i.e. commit signing) accepted and used among developers? (RQ2)
	To what extent can we detect the potential impersonations on GitHub? (RQ3)
	How can GitHub users be safeguarded against impersonation from user perceptions? (RQ4)

	Discussion
	Limitations
	Conclusion
	acknowledgment
	References

