
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

CodeGRITS: A Research Toolkit for Developer Behavior and Eye
Tracking in IDE

Ningzhi Tang*†, Junwen An*†, Meng Chen†, Aakash Bansal†
Yu Huang‡, Collin McMillan†, Toby Jia-Jun Li†

{ntang,jan2,mchen24,abansal1,cmc,toby.j.li}@nd.edu,yu.huang@vanderbilt.edu
†University of Notre Dame, Notre Dame, IN, USA

‡Vanderbilt University, Nashville, TN, USA

ABSTRACT
Traditional methodologies for exploring programmers’ behaviors
have primarily focused on capturing their actions within the In-
tegrated Development Environment (IDE), offering limited view
into their cognitive processes. Recent emergent work started us-
ing eye-tracking techniques in software engineering (SE) research.
However, the lack of tools specifically designed for coordinated
data collection poses technical barriers and requires significant
effort from researchers who wish to combine these two comple-
mentary approaches. To address this gap, we present CodeGRITS,
a plugin specifically designed for SE researchers. CodeGRITS is
built on top of IntelliJ’s SDK, with wide compatibility with the
entire family of JetBrains IDEs to track developers’ IDE interac-
tions and eye gaze data. CodeGRITS also features various practical
features for SE research (e.g., activity labeling) and a real-time API
that provides interoperability for integration with other research
instruments and developer tools. The demo video is available at
https://youtu.be/d-YsJfW2NMI.

1 INTRODUCTION
Tracking developers’ programming behavior provides valuable in-
sights into how they engage in the software development pro-
cess [9, 14, 19], and helps evaluate and improve the usability of pro-
gramming language features and tools in software engineering (SE)
research [11, 26]. Traditional approaches focus mainly on tracking
developers’ interactions with the integrated development environ-
ment (IDE), such as keystrokes, code changes, and IDE-specific
commands [11, 27]. However, while these approaches can identify
“what a programmer did,” they are limited in explaining “why they
did it.” Previous research relies mainly on surveys and interviews
to understand what developers were thinking and why they made
certain decisions [15]. However, these approaches are susceptible to
recall bias and may not capture developers’ self-consciousness [7].

To bridge this gap, in recent years, researchers have started in-
vestigating the use of eye tracking to understand the cognitive
processes of developers during software development such as pro-
gram comprehension [23], debugging [25], and code review [3].
Eye tracking involves recording the developers’ eye gaze data, i.e.,
the locations on the screen that the developers are looking at, while
programming [22]. According to the “eye-mind hypothesis,” the eye
fixations (i.e., spatially stable gazes that last for 200 to 300 ms [21])
and other eye movements (e.g., saccades, blinks) are closely related
to visual attention of users and the amount of cognitive process-
ing [13]. This hypothesis has been validated in previous studies in

*Both authors contributed equally to this research.

psychology [16] and human-computer interaction [6, 24]. Further-
more, by analyzing eye gaze data, researchers can facilitate down-
stream SE tasks, such as automated code summarization [1, 17].

Therefore, it becomes crucial for a tool that, in addition to track-
ing programmers’ IDE interactions, also tracks their eye gaze data
to understand their cognitive processes. Some tools exist to track
programmers’ eye movements [5, 12] or capture their interactions
with the IDE [11, 19, 27]. Notably, iTrace [12], focuses on tracking
eye movement data and has been implemented as plugins in several
popular IDEs, e.g., Visual Studio and Eclipse. But support for the
JetBrains IDEs (e.g., InteiiJ IDEA, PyCharm), which have increased
popularities in the industry and community12, is lacking. Moreover,
existing tools lack support to simultaneously record multiple forms
of behavioral data. This inability hampers researchers’ ability to
conduct comprehensive studies that integrate various aspects of
programmer behavior, such as eye fixations and IDE interactions,
into a unified study.

In this paper, we present CodeGRITS3, a plugin for JetBrains
IDEs (e.g., IntelliJ IDEA, PyCharm, etc.) that aims to address the
challenges discussed above. CodeGRITS is built on top of IntelliJ
Platform Plugin SDK and uses the Tobii Pro SDK to record the eye
gaze data, which could track the developers’ IDE interactions and
eye gaze data simultaneously. Similar to iTrace, CodeGRITS could
map the eye gaze data to the specific locations (i.e., line, column) and
tokens in the source code. In addition, CodeGRITS also performs an
upward traversal of the abstract syntax tree (AST) for each gaze to
understand its hierarchical structure. All collected data are stored
locally in comprehensible formats that allow for further analysis.

Compared to previous tools like iTrace, CodeGRITS provides
several extra features that cater to the specific needs of empirical
SE researchers. First, a built-in screen recorder provides additional
details about the developers’ programming behavior and could be
used to validate the eye tracking data. Second, CodeGRITS offers the
functionality to add customizable labels pre-set by the researchers
during tracking, to mark the developers’ activities (e.g., finished
debugging a bug). Finally, CodeGRITS provides a real-time data
access API that allows integration with other research instruments
and developer tools.

To summarize, our paper makes the following contributions:
(1) CodeGRITS, a new open-source plugin that tracks the de-

velopers’ IDE interactions and eye-tracking data simultane-
ously during development workflows.

1https://survey.stackoverflow.co/2022
2https://www.jetbrains.com/lp/devecosystem-2022/java/
3CodeGRITS stands for Gaze Recording & IDE Tracking System

1

https://youtu.be/d-YsJfW2NMI

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Tang et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

IDE Tracker

Eye Tracker

Real-time Data API

Trackers

Consumer

Stop

Start Tracking

User

Pause/Resume Tracking

Data Output

Code/Console
Archive

Tracking Data

Screen
Recording

Configuration

Functionnalities

Settings

Pre-set Labels
Tracking

Screen
Recorder

Figure 1: Overview of CodeGRITS.

Figure 2: Configuration panel of CodeGRITS.

(2) CodeGRITS implements several extra features, such as a
screen recorder, customizable labels, and a real-time data
API, to fulfill the needs of empirical SE researchers.

(3) CodeGRITS provides wide compatibility with different Jet-
Brains IDEs to map gazes to source code tokens for all
IDE-supported programming languages.

2 OVERVIEW
Figure 1 illustrates the architecture of CodeGRITS, which consists
of three components: (1) Configuration, (2) Trackers, and (3) Data
Output. A typical workflow begins with the user configuring the
settings in the Configuration section, followed by the activation
of trackers to monitor specific interactions, e.g., IDE interactions
and eye movements. Finally, the collected data is processed and
presented in different output formats.

The documentation of CodeGRITS is available at https://codegrits.
github.io/CodeGRITS/, which includes the usage guide, the down-
load link, and the data format. The source code is available at
https://github.com/codegrits/CodeGRITS.

2.1 Configuration
CodeGRITS offers a GUI-based Configuration panel, as shown in
Figure 2. Users could set the following three types of configurations:
Functionality, Settings, and Preset Labels.

2.1.1 Functionalities. Users can select the trackers they want to
use, including IDE Tracker, Eye Tracker, and Screen Recorder. Our
plugin currently supports Tobii Pro eye-tracking devices due to
its popularity in the eye-tracking community. If a compatible eye-
tracking device is not available, CodeGRITS would use the mouse
cursor as a substitute for eye gaze data.

2.1.2 Settings. Users can configure the following settings: (1) The
Python interpreter path that is used for Eye Tracker (discussed
in Section 3.2); (2) The output directory for the collected data; (3)
The sample frequency of Eye Tracker. The range depends on the
eye-tracking device; (4) The eye-tracking device to use. The mouse
is also available as a substitute.

2.1.3 Preset Labels. Users are able to pre-set some labels here
which could be used to mark the developers’ semantic activities
that cannot be captured by explicit IDE interactions. For example,
when users intend to mark the timewhen participating in a research
study on debugging, they could pre-set a label named “Bug Fixed 1.1”
or “Bug Fixed 1.2” and perform “Add Label” action during tracking
to mark the time when the bug is fixed. The label is also recorded
in the output data via IDE Tracker.

2.2 Trackers
Considering the needs of different users, CodeGRITS comes with
three trackers for various scenarios: (1) IDE Tracker, (2) Eye Tracker,
and (3) Screen Recorder. After configuration, users can start the
tracking process by clicking the “Start Tracking” button. The track-
ing process could be stopped by clicking the “Stop Tracking”. Users
could also pause/resume the tracking process.

2.2.1 IDE Tracker. IDE Tracker could track a wide range of IDE
interactions. A sample of them is shown in Appendix A. <actions>
part consists of IDE-specific features. These include clipboard fea-
tures like EditorPaste, EditorCut; run features like RunClass,
Stop, ToggleLineBreakpoint, Debug; navigation features like Find,
GoToDeclaration, ShowIntentionActions; and much more ad-
vanced IDE features like CompareTwoFiles, ReformatCode.

In addition to IDE-specific features, IDE Tracker also tracks file
system operations like FileOpened, SelectionChanged; charac-
ter typing events; mouse events like MouseMoved, MousePressed;
text fragment selection events; caret position events; and visible
area events. Detailed information on them is shown in CodeGRITS
Documentation. All tracked data are saved in an XML file with at-
tributes (e.g., timestamp, file path) for further analysis. A real-time
archive mechanism is also implemented to archive the whole code
files when they are changed, and the console output during the
development process.

2.2.2 Eye Tracker. The workflow of Eye Tracker is divided into
three steps: (1) connect to the eye-tracking device and receive raw
data, which includes the coordinates of the eye gaze points, pupil
diameters of both eyes and their validity; (2) map the coordinates
of raw gazes within the text editor to specific locations in the code
(i.e., file path, line and column number); (3) infer the source code
tokens that each gaze point is focusing on, as well as perform a
bottom-up process to traverse the AST structures of the tokens. An
example of the gaze data is shown in Appendix A.

2

https://codegrits.github.io/CodeGRITS/
https://codegrits.github.io/CodeGRITS/
https://github.com/codegrits/CodeGRITS

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

CodeGRITS: A Research Toolkit for Developer Behavior and Eye Tracking in IDE ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 3: Real-time data output panel.

Figure 4: CodeGRITS actions in Tools menu.

2.2.3 Screen Recorder. One feature of Code-GRITS is the ability
to record the screen during the tracking process. Screen Recorder
captures everything on the screen and saves the capture to a video.
The plugin records the timestamp of each frame, which can be used
to synchronize the screen recording with other tracking data to
facilitate analysis.

2.2.4 Real-time Data API. CodeGRITS provides an API for access-
ing IDE Tracker and Eye Tracker data in real-time, opening possibil-
ities for researchers to integrate CodeGRITS into a multi-step data
collection pipeline or develop applications using the post-processed
data of CodeGRITS, such as real-time visualization. Figure 3 illus-
trates a working example of the usage of real-time data API, which
outputs formatted Eye Tracker and IDE Tracker data in real-time
into the IDE side panel.

3 IMPLEMENTATION
CodeGRITS is designed as a plugin for JetBrains IDEs due to their
extensive popularity in the developer community. Our implemen-
tation is based on the official IntelliJ Platform Plugin SDK4, as it
allows us to leverage the extensibility of IntelliJ Platform with built-
in APIs. The SDK is also compatible with all JetBrains IDEs such as
IntelliJ IDEA, PyCharm, and CLion.

Following the guidelines of IntelliJ Platform Plugin SDK, every
user-initiated action (i.e., start/stop tracking, pause/resume track-
ing, add label, and open configuration panel) is implemented as Java
classes that extend the abstract AnAction class, so that they are
added to IDE menus and toolbars, as shown in Figure 4. Trackers
are passed into action classes as member variables, whose states are
controlled via the overridden actionPerformed method. For in-
stance, when the user clicks on “Start Tracking”, actionPerformed
is invoked. The method then loads the user’s configuration to prop-
erly instantiate the enabled trackers and signal their activation.

4https://plugins.jetbrains.com/docs/intellij/welcome.html

3.1 IDE Tracker
IDE Tracker is implemented by registering listeners in the IntelliJ
Platform such as EditorMouseListener andSelectionListener.
Each time a specific event is triggered, the corresponding listener
would be notified and the event would be recorded in the output
data. The most important listener is AnActionListener, which
tracks IDE-specific features as shown in the <actions> part of IDE
tracking data (Appendix A). The real-time archive mechanism of
IDE Tracker is implemented via DocumentListener interface.

3.2 Eye Tracker
We use the Tobii Pro SDK for Python5 to collect eye tracking data
and use Java ProcessBuilder to call the Python script to collect
data. The Python interpreter path is specified in the configuration.
After receiving raw data from the eye-tracking device, Eye Tracker
in CodeGRITS would first compute the coordinates of each gaze
relative to the top-left corner of the visible code editor. Then, the
coordinates would be mapped to the specific locations in the code
file (i.e., line and column) via xyToLogicalPosition() method of
the Editor interface of IntelliJ Platform Plugin SDK. Next, the con-
crete source code tokens that the gaze points focusing on would be
computed by findElementAt() method of the PsiFile interface.
PSI stands for Program Structure Interface6, which represents the
underlying model of JetBrains IDEs to parse the AST of the code.
Finally, Eye Tracker would iteratively use the getParent()method
of the PsiElement interface to perform bottom-up traversal of AST
structures of the tokens.

3.3 Screen Recorder
We use the native Robot class to capture screenshots between fixed
time intervals, and AWTSequenceEncoder class in jcodec7, a light-
weight encoder library to encode screenshots into frames and gen-
erate the video.

3.4 Real-time Data API
The core of the API is Java’s Consumer interface, which enables flex-
ibility and extensibility. The user can implement a custom function
that takes an Element object in package org.w3c.dom as input and
void as output. Whenever a new XML element is created (e.g., IDE
Tracker detected an IDE interaction), the element will be passed
into the user-created function for processing. Its full documentation
and usage are elaborated on CodeGRITS Documentation.

3.5 Support for Multiple IDEs and Languages
CodeGRITS supports major JetBrains IDEs, e.g., IntelliJ IDEA, Py-
Charm, WebStorm. Its Eye Tracker can compute the tokens and
perform upward traversal of AST of all programming languages
supported by each IDE. For example, in IntelliJ IDEA, the Java and
Kotlin IDE, Eye Tracker could understand the AST of Java, Kotlin,
Groovy, etc, while in PyCharm, the Python IDE, it could understand
the AST of Python. Besides, some languages are supported by mul-
tiple IDEs, such as HTML, CSS, JavaScript, XML, etc. CodeGRITS
can traverse the AST structure for the gaze on all of them.
5https://developer.tobiipro.com/python/python-getting-started.html
6https://plugins.jetbrains.com/docs/intellij/psi.html
7https://github.com/jcodec/jcodec

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Tang et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

4 USE CASES
4.1 Understanding Developer Behavior and

Cognition
The data collected by CodeGRITS provide a fine-grained source
of information for quantitative analysis of programmers’ software
development process. For instance, in a previous study [25], we used
an earlier version of CodeGRITS to collect data from the process of
9 programmers to debug AI-generated code. Each data collection
session lasted approximately 120 minutes, and the data was used
to understand their behavior and cognition patterns.

CodeGRITS could also be used by SE researchers to collect data
for their studies in a wide range of tasks e.g., program comprehen-
sion, software traceability, and code review.

4.2 Context-aware Programming Support
Context-aware computing is a paradigm in which the behavior of
the application is adapted to the current context of the user [8].
CodeGRITS tracks the developers’ interactions with the IDE and
the code, as well as the developers’ eye gaze data, which form a rich
source of context information about them—the developers’ current
behavior focus, and cognitive load. Inferring the developers’ states
from the tracked data lays the foundation for providing personal-
ized programming support, potentially improving productivity and
reducing their cognitive load.

Furthermore, the reduced cost and improved user-friendliness
of eye-tracking devices increase the versatility of CodeGRITS, as it
can easily be integrated into nonlaboratory settings, i.e., a natural
development environment, and facilitate various usages.

5 LIMITATION AND FUTUREWORK
There are four main limitations of CodeGRITS. First, CodeGRITS
currently only supports Tobii eye-tracking devices. However, the
source code of CodeGRITS is provided for the community to expand
its hardware support. We also plan to expand its support for other
eye-tracking hardware SDKs in the future, too.

Secondly, CodeGRITS only captures the developer behavior and
eye gaze data within the IDE, and cannot track outside activities
such as browsing websites, reading documents, or using GitHub.
We use Screen Recorder as a compensation to fill this gap.

Thirdly, Eye Tracker of CodeGRITS can only parse content
within the editor to obtain tokens or AST structures, and cannot
track other parts of the IDE, such as the menu bar or console.

Finally, CodeGRITS’s tracking of the software development pro-
cess focuses on objective syntactic information. It cannot interpret
the subjective semantic aspects, such as finishing fixing a bug or
completing writing a function. We developed the “Add Label” fea-
ture for CodeGRITS to complement this. In future work, we will
explore methods to model these semantic aspects.

6 RELATEDWORK
There exist several tools for collecting eye-tracking data in devel-
opment environments [5, 12, 20], as well as eye-tracking data post-
processing tools [2] and eye movement visualization tools [4, 18].
In particular, iTrace [12, 20] served as a fundamental infrastructure
in the field, with researchers introducing several works [2, 4, 10]

that extends iTrace’s functionalities. Researchers also introduced
several IDE plugins to capture IDE interactions [11, 27] as well as
IDE interaction visualization tools [19].

Compared with the previous work described above, CodeGRITS
exhibits advances by combining several behavior trackers and pro-
vides additional features to support future research.

7 CONCLUSION
In this paper, we present CodeGRITS, a plugin that uses IDE track-
ing, eye tracking, and screen recording methods to collect data
from the software development process of developers. CodeGRITS
is compatible with most JetBrains IDEs and all their supported pro-
gramming languages. CodeGRITS also provides several additional
features to facilitate the empirical needs of researchers.

REFERENCES
[1] A. Bansal et al. 2023. Towards Modeling Human Attention from Eye Movements

for Neural Source Code Summarization. (2023).
[2] J. Behler et al. 2023. ITrace-Toolkit: A Pipeline for Analyzing Eye-Tracking Data

of Software Engineering Studies. In ICSE-Companion ’23.
[3] I. Bertram et al. 2020. Trustworthiness perceptions in code review: An eye-

tracking study. In ESEM ’20. 1–6.
[4] B. Clark et al. 2017. iTraceVis: Visualizing Eye Movement Data Within Eclipse.

In VISSOFT ’17. 22–32.
[5] A. Costi et al. 2020. CogniKit: An Extensible Tool for Human Cognitive Modeling

Based on Eye Gaze Analysis. In IUI-Companion ’20.
[6] D. K. Davis and F. Zhu. 2022. Analysis of software developers’ coding behavior:

A survey of visualization analysis techniques using eye trackers. Comput Hum
Behav Rep (2022).

[7] M. C. Davis et al. 2023. What’s (Not) Working in Programmer User Studies?
ACM Trans. Softw. Eng. Methodol. (2023).

[8] A. K Dey. 2001. Understanding and using context. Pers Ubiquitous Comput 5
(2001), 4–7.

[9] G. Di Rosa et al. 2020. Visualizing Interaction Data Inside & Outside the IDE to
Characterize Developer Productivity. In VISSOFT ’20. 38–48.

[10] S. Fakhoury et al. 2021. gazel: Supporting Source Code Edits in Eye-Tracking
Studies. In ICSE-Companion ’21.

[11] Z. Gu et al. 2014. Capturing and Exploiting IDE Interactions. In Onward! 2014.
83–94.

[12] D. T. Guarnera et al. 2018. ITrace: Eye Tracking Infrastructure for Development
Environments. In ETRA ’18.

[13] M. A. Just and P. A Carpenter. 1976. Eye fixations and cognitive processes.
Cognitive psychology 8, 4 (1976), 441–480.

[14] R. Minelli et al. 2015. I Know What You Did Last Summer: An Investigation of
How Developers Spend Their Time. In ICPC ’15.

[15] H. Müller et al. 2014. Survey research in HCI. Ways of Knowing in HCI (2014),
229–266.

[16] R.-M. Rahal and S. Fiedler. 2019. Understanding cognitive and affective mecha-
nisms in social psychology through eye-tracking. J Exp Soc Psychol 85 (2019).

[17] P. Rodeghero et al. 2014. Improving Automated Source Code Summarization via
an Eye-Tracking Study of Programmers. In ICSE ’14.

[18] D. Roy et al. 2020. VITALSE: Visualizing Eye Tracking and Biometric Data. In
ICSE-Companion ’20.

[19] M. Schröer and R. Koschke. 2021. Recording, Visualising and Understanding
Developer Programming Behaviour. In SANER ’21.

[20] T. R. Shaffer et al. 2015. ITrace: Enabling Eye Tracking on Software Artifacts
within the IDE to Support Software Engineering Tasks. In ESEC/FSE ’15.

[21] Z. Sharafi et al. 2015. Eye-tracking metrics in software engineering. In APSEC
’15. 96–103.

[22] Z. Sharafi et al. 2020. A practical guide on conducting eye tracking studies in
software engineering. Empir Softw Eng 25 (2020), 3128–3174.

[23] Z. Sharafi et al. 2022. Eyes on Code: A Study on Developers’ Code Navigation
Strategies. TSE ’22 (2022).

[24] V. Skaramagkas et al. 2021. Review of eye tracking metrics involved in emotional
and cognitive processes. IEEE Rev Biomed Eng 16 (2021), 260–277.

[25] N. Tang et al. 2023. An Empirical Study of Developer Behaviors for Validating
and Repairing AI-Generated Code. PLATEAU ’23.

[26] A. Yamamori et al. 2017. Can Developers’ Interaction Data Improve Change
Recommendation?. In COMPSAC ’17.

[27] Y. Yoon and B. A. Myers. 2011. Capturing and Analyzing Low-Level Events from
the Code Editor. In PLATEAU ’11.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

CodeGRITS: A Research Toolkit for Developer Behavior and Eye Tracking in IDE ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

A EXAMPLE OUTPUT DATA

Listing 1: An example of IDE tracking data.
<ide_tracking >

<actions >

<action id="SaveAll" path="/src/Main.java" timestamp="1696214490354"/>

<action id="RunClass" path="/src/Main.java" timestamp="1696214496053"/>

<action id="ToggleLineBreakpoint" path="/src/Main.java" timestamp="1696214500296"/>

<action id="GotoDeclaration" path="/src/Main.java" timestamp="1696214513473"/>

<action id="Debug" path="/src/Main.java" timestamp="1696216129173"/>

<action id="NewClass" path="/src" timestamp="1696217116236"/>

<action id="RenameElement" path="/src/ABC.java" timestamp="1696217122074"/>

</actions >

<typings >

<typing character="S" column="8" line="3" path="/src/Main.java" timestamp="1696216429855"/>

<typing character="y" column="9" line="3" path="/src/Main.java" timestamp="1696216430111"/>

</typings >

<files >

<file id="fileClosed" path="/src/Main.java" timestamp="1696216679318"/>

<file id="selectionChanged" new_path="/src/ABC.java" old_path="/src/Main.java" timestamp="1696216679330"/>

</files >

<mouses >

<mouse id="mousePressed" path="/src/DEF.java" timestamp="1696217839651" x="642" y="120"/>

<mouse id="mouseReleased" path="/src/DEF.java" timestamp="1696217840187" x="642" y="120"/>

</mouses >

</ide_tracking >

Listing 2: An example of tracked eye gaze data.
<eye_tracking >

<gaze timestamp="1696224370377">

<left_eye gaze_point_x="0.5338541666666666" gaze_point_y="0.17407407407407408" gaze_validity="1.0"

pupil_diameter="2.4835662841796875" pupil_validity="1.0"/>

<right_eye gaze_point_x="0.5338541666666666" gaze_point_y="0.17407407407407408" gaze_validity="1.0"

pupil_diameter="2.7188568115234375" pupil_validity="1.0"/>

<location column="25" line="2" path="/src/Main.java" x="820" y="150"/>

<ast_structure token="println" type="IDENTIFIER">

<level end="2:26" start="2:19" tag="PsiIdentifier:println"/>

<level end="2:26" start="2:8" tag="PsiReferenceExpression:System.out.println"/>

<level end="2:42" start="2:8" tag="PsiMethodCallExpression:System.out.println ("Hello␣world!")"/>

<level end="2:43" start="2:8" tag="PsiExpressionStatement"/>

<level end="3:5" start="1:43" tag="PsiCodeBlock"/>

<level end="3:5" start="1:4" tag="PsiMethod:main"/>

<level end="4:1" start="0:0" tag="PsiClass:Main"/>

</ast_structure >

</gaze >

</eye_tracking >

5

	Abstract
	1 Introduction
	2 Overview
	2.1 Configuration
	2.2 Trackers

	3 Implementation
	3.1 IDE Tracker
	3.2 Eye Tracker
	3.3 Screen Recorder
	3.4 Real-time Data API
	3.5 Support for Multiple IDEs and Languages

	4 Use Cases
	4.1 Understanding Developer Behavior and Cognition
	4.2 Context-aware Programming Support

	5 Limitation and Future Work
	6 Related Work
	7 Conclusion
	References
	A Example Output Data

