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Abstract—Expert programmers are more effective at coding
activities, but the reasons for this remain elusive. Accordingly,
recent research has used neuroimaging such as fMRI to analyze
how expert programmers might think as they perform coding
activities. Those experiments have all involved specific program-
ming tasks (i.e., comprehension), but have been unable to detect
systematic differences based on coding experience. By using
tasks, however, those studies may limit the number and type of
brain networks involved. In Cognitive Neuroscience, researchers
commonly analyze resting-state data, in which participants’
brain activity is recorded as they lay idle in the scanner. The
brain’s functional organization is plastic, and can change with
experience. These changes can be measured at rest, making this
a suitable data type for studying how programming activities
affect neural organization over time. In this paper, we analyzed
the resting state scans from 150 participants, 96 of whom were
programmers. We found increased connectivity in programmers
between brain regions involved in language, math, and the tempo-
ral attention. Non-programmers demonstrated more connectivity
with regions involved in social and emotional cognition. We found
that as years of programming experience increases, connectivity
decreases between two regions associated with visual processing
during reading and articulation, respectively.

Index Terms—Programming Expertise, fMRI, Resting State

I. INTRODUCTION

Coding has increasingly become a necessary skill in the
workforce [1]. To meet this economic and societal need,
researchers have investigated how to best train and educate
new programmers [2]. One approach for this is to identify
the traits of expert programmers that make them experts,
and help novices attain these [2]. Research into the cognitive
factors of programming has framed this into ‘how can we
help novices think like experts?’ [3, 4]. There is a vibrant
history of behavioral research in Software Engineering (SE)
that has investigated the cognitive processes of programming
activities [3, 4, 5, 6], with some current research employing
techniques like neuroimaging [7, 8]. Neuroimaging provides
an exclusive vantage point into the cognition of programmers,
and has helped ground the perceptual experiences of pro-
grammers in measurable findings (i.e., the influence of code
complexity on brain activity [9]). Despite the progress, this
technology has struggled to identify systematic differences
based on coding experience [8]. This is partially due to exper-
imental designs of previous neuroimaging studies, which have
scanned participants while they complete single tasks (i.e.,
debugging [10]). Those studies have helped to localize coding
processes within the brain, but have only been able to expose

expertise differences specific to those processes. Thus, the
window through which researchers have studied the cognition
of expertise is relatively narrow. As such, we still lack a
foundational understanding of cognitive differences resulting
from time spent on coding activities. A broader perspective on
these differences could lead to improved practices for training
new programmers, deeper insight into the cognition of coding,
and further guidance for future research.

In Cognitive Neuroscience, researchers regularly analyze
resting state scans, where participants are scanned in an
fMRI machine as they lay idle [11]. This flexible exper-
imental design can expose pluralistic differences between
study populations because participants are not given a targeted
task, and are not presented with external stimuli [11]. Using
resting state scans, researchers study patterns in the innate,
spontaneous activity of participants’ brains [11]. This type
of data offers many benefits in that it does not require the
design of an experimental task, it can be more straightforward
for comparisons without a task, and there exist many pub-
licly available resting state datasets [12]. Resting state data
has proved valuable because after extensive research on the
brain “at rest,” research has uncovered a consistent functional
organization where certain brain regions are more likely to
exchange information with one another [11]. These are collec-
tively known as Resting-State Networks (RSNs). Some RSNs
are actually more active during rest, with the Default Mode
Network (DMN) being the most prominent. This distinctive
constellation of brain regions is widely studied to measure the
brain’s intrinsic activity [13]. Researchers study these RSNs
to measure the lasting changes in brain connectivity that result
from lived experiences. For instance, researchers have found
differences between mathematicians and non-mathematicians
in the functional organization of several RSNs [14].

One may think that without a carefully designed task,
participants’ brain activity may be too variable for drawing
any broader conclusions. However, RSNs are remarkably
consistent between individuals because they reflect the under-
lying functional organization of the brain. In addition, these
studies require fewer data points (5-10 minutes) for sufficient
statistical power since they consist of continuous activity
over a period of time, rather than event-related responses
with a beginning, middle, and end [15]. Researchers can use
nuances in these networks to infer differences between study
populations. For instance, researchers have shown that brain



activity of expert musicians was more correlated than that
of non-musicians within a specific brain region [16]. These
measurable differences are due to the brain’s plasticity, where
its structural and functional organization changes in response
to environmental and genetic factors [17]. Researchers can
measure how sustained patterns of co-activation during wake-
fulness can lead to lasting changes in the brain’s functional
organization at rest [18]. While increased time spent on coding
activities may not make someone an expert, we hypothesize
that sustained patterns of activity from time spent on program-
ming activities (i.e., code reading, code writing, debugging,
cod review, etc.) will lead to lasting changes in the functional
organization of the brain, observable at rest.

We present an analysis of RSNs from 150 participants’
resting state fMRI scans. This data originates from four fMRI
datasets (collected on the same scanner at the University
of Michigan from 2016 to 2021). Three of these datasets
consist of programmers who were all graduate and undergrad-
uate students, while one consists of non-programmers who
were primarily STEM students. We first analyzed differences
between programmers and non-programmers to explore the
lasting impacts of coding activities on brain connectivity. We
then analyzed differences between novice, intermediate, and
expert programmers to study how these patterns of brain con-
nectivity might progress. We found that programmers exhibit
more connectivity from language areas to those involved in
temporal attention and mathematical processing. By contrast,
non-programmers express more connectivity with regions as-
sociated with social cognition and emotional processing. Fur-
thermore, we found that a functional connection between two
brain regions decreases with more years of coding experience.
Our contributions include the following:

• The first resting state fMRI analysis in SE.
• The first systematic neurological analysis regarding pro-

gramming expertise. Our study revealed programmers
have increased connectivity between attention, language,
and math regions, and decreased connectivity with re-
gions associated with social and emotional cognition.

• The first neurological comparison between programmers
and non-programmers.

• The largest combined fMRI dataset for studying the
cognition of coding.

• Data available upon request and analysis code here 1.

II. BACKGROUND AND RELATED WORK

In this section, we describe fMRI in SE, background infor-
mation of RSNs, and previous work in Cognitive Neuroscience
exploring the effects of expertise in RSNs.

A. Functional Magnetic Resonance Imaging in SE
Essentially, fMRI gives insight into brain activity by mea-

suring oxygenated blood flow in the brain using the Blood-
Oxygen Level Dependent (BOLD) signal [11]. Researchers in
SE have used fMRI to study various coding tasks, such as code

1https://github.com/largehappygroup/resting state connectivity/tree/main/
better replication package

comprehension [19], code writing [7, 20], debugging [10],
code complexity [9], and even gender biases during code
review [21], among others [8, 22]. Those task-based exper-
iments have reported the significance of regions associated
with language [8], salience detection [10], mathematics [7],
and mental rotation [22]. Previous studies have also used
classification to inform our understanding of the cognition
of coding, finding that specific brain regions can be used
to distinguish between code reading and prose reading [8].
Those findings have begun to paint an impressionist picture
of the cognitive skills involved in programming, to which
we contribute in this study by uncovering differences in the
network activity of programmers at rest.

B. Resting State Scans
To infer network characteristics of the brain at rest, re-

searchers can use a technique called functional connectivity
analysis, which calculates the correlation of brain areas’ activ-
ity over time. This type of analysis can effectively be applied to
both task-based experiments and resting state scans [11, 23],
and has been used in SE to identify the brain regions that
coordinate in code writing tasks [7]. When humans are at
rest, regions in their brains are not responding to any external
stimulus, but are nonetheless still active and selectively cor-
related with one another [15]. This, coupled with evidence
that sustained patterns of co-activation can lead to lasting
changes in the brain, implies there are measurable correlations
at rest that are indicative of neurological changes over time.
Leveraging this insight, researchers have analyzed resting state
data to find meaning in the brain regions whose activity is
significantly correlated at rest [16]. In this manner, resting
state scans are not constrained by a task specifically designed
to elicit certain types of activity, and can give insight into the
spontaneous yet patterned activity of all RSNs.

While analyzing resting state scans can offer many benefits,
there are important challenges related to extraneous sources
of noise, such as head movement or even respiration in the
scanner [15]. Researchers typically perform motion correction
during preprocessing, and correct physiological noise using a
library called RETROICOR [24], or Independent Component
Analysis (ICA). The latter separates the brain signal into
spatially independent patterns of activity [23], and enables the
isolation of components associated with signal, motion, and
physiology, and removal of components associated with the
latter two. There are numerous analysis techniques for func-
tional connectivity analysis for resting state fMRI, with the
most common being ICA (as mentioned above) and seed-based
connectivity analysis [11]. In seed-based analyses, researchers
choose regions a priori and calculate their correlation with
other brain areas. These “other brain areas” can be individual
voxels in a seed-to-voxel analysis, or other populations of vox-
els in a Region-of-Interest (ROI)-to-ROI analyses. These seed
regions are chosen based on prior literature and researchers’
hypotheses, and can be defined using parcellation maps of the
brain or spheres around voxels [25]. Seed regions are made
up of numerous voxels, so as a first step researchers calculate



an average timecourse from this population of voxels. This
average timecourse then serves as a reference to which all
other voxel or region timecourses are correlated [11]. Through
this process, researchers can uncover voxels or brain areas
whose activity is highly correlated with that of the seed region.
Averaging timecourses in this manner can also help to improve
the signal-to-noise ratio since individual voxel timecourses
are susceptible to the artifacts mentioned above, but broader
regions can cancel out these local artifacts [23].

C. Analyzing Expertise in Cognitive Neuroscience
Though a resting state analysis of expertise in programming

has not been implemented, neuroscientists have explored the
effect of expertise in other domains using resting state data. A
key principle in Neuroscience is that of plasticity, where the
brain changes in response to lived experiences and genetic
expression [17]. Plasticity is a broad term that can refer
to neurological changes related to natural development and
traumatic events alike [17]. Researchers have studied how
experience with a skill can measurably alter the functional
organization of one’s brain at rest [18], causing an increase
or decrease in functional connectivity. This has been reported
in physical tasks such as gymnastics [26] and endurance run-
ning [27], along with cognitive tasks such as meditation [28]
and math [14]. For example, in runners, researchers found an
increase in functional connectivity between regions involved in
motor control and executive function, reasoning that endurance
running requires sustained focus [27]. Interestingly, greater
experience in a domain can lead to decreases in functional
connectivity as well. For instance, researchers found that math-
ematicians expressed lower levels of functional connectivity
between the Left and Right Caudate Nuclei [14]. Changes in
functional connectivity are not inherently good or bad, but
the improvement in a skill can be reflected in the resultant
cognitive changes. In this study analyzing resting state data of
programmers, we also found that an increase of coding expe-
rience is associated with a decrease in functional connectivity
between the Left Lingual Gyrus and the Left Precentral Gyrus.
These regions are involved in attention during reading and
articulation, respectively, and may reflect increased cognitive
efficiency from time spent on programming tasks.

III. METHODS

In this section, we present details related to the resting
state datasets, procedures used for data preprocessing, and the
analysis of the resting state data at the subject and group levels.
A. Datasets

The resting state scans used in this study originate from
four fMRI datasets, three of which are from computer science
studies and publicly available, and one is from a Cognitive
Neuroscience study. The original teams of researchers ob-
tained IRB approval to conduct the studies, and used standard
fMRI data collection procedures [29]. All studies used the
same scanner for data collection. The three computer science
datasets were collected using the same scanning parameters,
while the parameters in the fourth dataset were slightly differ-
ent, which we detail in this section.

Participants Our total dataset consists of resting state scans
from four studies and 150 participants (64 females), ranging
from 18–29 years old (mean = 22.248, SD = 2.556). We
split this dataset into two samples according to the alignment
of fMRI preprocessing procedures and the formatting of de-
mographic data related to programming experience. We label
these datasets A, B, C, and D, and detail their demographic
information in Table I. All Computer Science students from
datasets B, C, and D (n = 96) were graduates and undergrad-
uates, recruited from the same upper-level Computer Science
course in different years. Collected demographic information
included age, gender, sex, and native language. Dataset C
recorded coding experience in years [22], while dataset D
recorded experience in semesters [20]. Participants in dataset
B reported their coding experience either cumulatively, quali-
tatively, or by language [21]. In this study, we compared CS
Students in datasets C and D based on their years of coding
experience, and converted semesters in dataset D to years
by counting two semesters as one year. We excluded dataset
B from our expertise analysis because of inconsistencies in
the formatting of participants’ reported coding experience.
In comparing programmers and non-programmers, we used
studies A and B since their preprocessing was more aligned
(which we detail in Section III-B). For the expertise analysis
among programmers, we split datasets C and D into beginners,
intermediates, and experts based on years of coding experi-
ence. This allowed us to analyze connectivity patterns along
an approximate continuum, with the intermediate group also
providing a sharper contrast between novices and experts. This
information is detailed in Table II. Dataset A included informa-
tion about the educational backgrounds of 38 participants, 31
of whom were STEM majors. Three participants who majored
in CS were excluded from this dataset. Some participants for
whom we did not have major information may have had CS
experience, which we discuss in Section VI.

TABLE I: Demographics of our sample of participants (n =
150). In our analyses, we grouped dataset A with B, and
dataset C with D. Datasets A and B were consistent in
their preprocessing, while C and D were consistent in the
information collected related to coding experience.

Label Education n Avg. Age Women Men Coding Experience
A Non-CS 54 23.1 26 28 —
B CS 37 21.9 16 21 mixed values
C CS 33 22.1 14 19 in years
D CS 26 21.1 9 17 in semesters

TABLE II: Group partitions of programmers from Datasets C
and D, based on their years of coding experience.

Group Years of Experience n Avg. Age Women Men
Novices < 3 years 23 20.3 8 15

Intermediates 3 – 4 years 23 21.6 11 12
Experts > 4 years 13 24 4 9

Scanning Parameters - Dataset A Scans were collected on
an 3T MR750 GE Scanner with an 8-channel head coil. High
resolution anatomical scans (T1-weighted SPGR, 156 slices)
were collected first with TI = 500ms, FA = 15◦, and FOV =
256mm2. Resting state scans (2D Gradient Echo spiral pulse



sequence, 43 axial slices, 3mm thickness and no spacing) were
collected in an interleaved, bottom-up sequence with TR =
2000ms, TE = 30ms, FA = 90◦, FOV = 220mm2. Eight
minutes of resting state were collected from each participant
at a slower TR, yielding 240 volumes for each.

Scanning Parameters - Dataset B, C and D Scans were
collected on the same 3T MR750 GE Scanner, but with a
32-channel head coil. High-resolution anatomical scans (T1-
weighted spoiled gradient recall sequence, 208 slices, 1mm
thickness) were collected first with TR = 2300.80ms, TE
= 24ms, TI = 975ms, and FA = 8◦. An estimate of the
magnetic field homogeneity within the scanner was collected
using a spin-echo fieldmap with a TR = 7400ms, TE =
80ms, and slice thickness of 2.4mm. The resting state data
(T ∗

2 -weighted multiband echo planar imaging sequence, 60
slices, 2.4mm thickness) was collected with a TR = 800ms,
TE = 30ms, FA = 52◦, and an acceleration factor of 6.
Including slice thickness, the isotropic voxel dimensions were
[2.4mm × 2.4mm × 2.4mm]. Eight minutes of resting state
were collected from each participant, yielding 600 volumes for
each. We acknowledge the discrepancies in scanning parame-
ters between datasets, and discuss our mitigation strategies in
Sections III-C and VI (Limitations).

Atlases To standardize neuroimaging analysis and results
across individuals, researchers use atlases such as the MNI152
template to align (register) participants’ brain images [30].
This enables a shared coordinate space across participants
and studies. Research also aims to map cognitive processes to
specific regions and networks of the brain, with active research
into how to best distinguish, or parcellate, brain areas. In
this study, we used the Schaefer Atlas, which parcellates the
cortex of the brain into 400 distinct regions [31]. We used this
parcellation scheme in formalizing seed regions for functional
connectivity analysis, with more details in Section III-C.
B. Preprocessing

To preprocess the resting state fMRI data for functional
connectivity analysis, we implemented a standard pipeline
using established libraries and methodologies [32]. The first
12 volumes were removed to eliminate effects of thermal noise
and scanner drift. The scans were slice-timing corrected, then
datasets C and D were unwarped [33]. Datasets A and B were
not unwarped due to missing fieldmap data. Datasets A and
B were corrected for physiological noise at this stage using
RETROICOR [24]. The physiological data from datasets C
and D were low quality, so we performed ICA correction at
a later stage to remove physiological noise (detailed below).
We then extracted the brain from the anatomical images of all
datasets, and registered each to MNI152 space using affine
then non-linear registration [34]. We then applied motion
correction to the functional scans to align the volumes, and
recorded motion parameters along 6 axes [35, 36]. Next, the
functional scans were registered with the anatomical scans,
and then registered to MNI152 space [34]. Next we applied
gaussian smoothing (3mm kernel) to the functional scans [35],
which can help improve both the signal-to-noise ratio [32], and
reliability for merging datasets [32].

We performed ICA on datasets C and D to correct for
physiological noise, decomposing each participant’s functional
scan into 60 components [35]. For 16 participants we hand-
classified each component as signal or noise, which remains
the gold standard for identifying noise [37]. In classifying
components as either signal or noise, the authors agreed on
the criteria, considering: (1) the frequency of components, with
higher frequencies suggesting cardiac signals; (2) the power
spectra of components, supporting frequency information; (3)
the location of components, noting that those in cerebrospinal
fluid or arteries do not indicate neural activity; and (4) the
location of components around the brain’s outer rim, character-
istic of motion artifacts. These hand-classifications were used
as training data to create a study-specific classification [35],
which we then applied to remove noisy components from
all participants’ data in these two datasets (threshold of 20).
Finally, we regressed out the motion parameters recorded
above, their first derivatives, and a linear trend, from each
voxel’s timecourse in all datasets for further motion correction.

C. Analysis

To study functional changes in the brain from time spent on
coding activities, we used seed-based functional connectivity
to first compare programmers and non-programmers, then
compare programmers amongst themselves based on their
years of coding experience. Here we discuss our reasoning
in selecting seed regions and our strategies for subject- and
group-level analyses.

Seed Regions The results from task-based fMRI experi-
ments in SE were integral in identifying key brain regions
involved in coding activities. Specifically, previous studies
have reported the involvement of the Left Inferior Frontal
Gyrus (LIFG, Broca’s Area) in code comprehension [9, 19]
and code writing [20]. Significant functional connectivity was
also reported during code writing between the LIFG and the
Right Inferior Temporal Gyrus (RITG) [7, 38], known in Math
Education research as the Number Form Area [38]. Previous
research has shown that list operations elicit activity in both
the Left Inferior Temporal Gyrus (LITG), also known as the
Visual Word Form Area (VWFA), and the Right Superior
Parietal Lobule (RSPL) [22]. The RSPL has been implicated in
visuospatial processing, and was also found to exhibit patterns
of functional connectivity that were affected by participants’
GPA during code writing [7]. Due to the significance of the
DMN, we also considered both hemispheres of one compo-
nent in our analyses, the Right and Left Posterior Cingulate
Cortices (RPCC/LPCC). These 6 areas define our regions of
interest, which we localized to parcels of the Schaefer Atlas.
In localizing these areas, we referred to MNI coordinates with
peak connectivity reported in previous research [7], as well
as figures of activation maps [7, 20, 22]. There was a degree
of subjectivity involved in choosing seed regions, which we
address in Section VI. The 6 seed regions we considered, their
indices in the Schaefer Atlas, and the MNI coordinates within
these parcels are detailed in Table III.



TABLE III: Seed regions for functional connectivity analyses,
based on previous neuroimaging research in SE. MNI Coordi-
nates refer to coordinates with peak activity and connectivity
in prior research. Specific parcels were chosen by referring to
MNI coordinates and activation maps in previous studies.

Region MNI Coordinates Schaefer Parcel
L Inferior Temporal Gyrus [-59, -44, -10] 133
L Inferior Frontal Gyrus [-50,30,-2] 172
L Posterior Cingulate Cortex [-7, -49, 27] 192
R Inferior Temporal Gyrus [61, -44, -9] 339
R Superior Parietal Lobule [26, -42, 64] 284
R Posterior Cingulate Cortex [8, -49, 27] 395

Subject and Group Level Analysis To measure the corre-
lation of brain activity between brain regions, we performed an
ROI-to-ROI functional connectivity analysis. We used parcels
of the Schaefer Atlas to delineate these regions, and calculated
the correlation from our seed regions to all other parcels in the
Schaefer Atlas. For example, the LIFG corresponds to parcel
172 in the Schaefer atlas, which is comprised of 378 voxels.
We averaged all the voxels’ timecourses together within this
parcel to obtain a mean timecourse, and did the same for the
other 399 parcels. Using the mean timecourse from parcel
172, we then calculated its Pearson Correlation Coefficient
with all 400 parcels’ mean timecourses. We repeated this
process for the other five seed regions to obtain measures
of functional connectivity between brain regions. We also
computed a correlation matrix by correlating every parcel’s
timecourse with one another. We first calculated correlation
coefficients for each participant, then performed Fisher’s z-
transformation to calculate the coefficients’ inverse hyperbolic
tangents. This process is standard in fMRI analysis, and
helps to normally distribute the data [39]. After computing
these z-scores, we determined significant differences between
groups’ functional connectivity using two-sample t-tests on z-
scores. We then corrected for multiple comparisons using the
Benjamini-Hochberg method [40]. Lastly, our experts were
significantly older than our novices (p < 0.001), so we
performed linear regression to analyze whether our findings
were attributable to years of coding experience or general
effects of age. In Cognitive Neuroscience, t-tests are often
used to assess group differences in resting-state date [28],
while linear regression can be used to analyze relationships
between brain measures and confounding variables like age,
or factors like test scores [41].

Gaussian Process Classification We explored differences
in our sample using hand-picked seed regions, but also sought
to find important regions for delineating our sample using a
data-driven approach, while still correcting for multiple com-
parisons. To this end, we used Gaussian Process Classification
(GPC) to find regions informative for classifying between
programmers based on their experience. This multivariate
analysis has previously been used in neuroimaging studies
for SE [8, 21], and considers whole-brain activity patterns in
classifying participants’ fMRI data. The study by Floyd et
al. contains a more detailed explanation, but we give a brief
description of relevant information for this study. This method

classifies participants by first compressing fMRI data into a
feature space using a linear kernel. Since the kernel is linear,
the calculated feature space can be projected back into the
original data space, enhancing the model’s explainability. In
other words, the decision function can be visualized as weights
mapped to specific brain regions. Subsequently, we used the
regions given high weights by the model as seed regions
for an additional functional connectivity analysis. In training
the model, we used an iterative leave-one-out cross-validation
scheme. By classifying each participant, this approach yields
a percent accuracy for classifying both groups, and an average
Balance Accuracy (BAC) for the model as a whole.

IV. RESULTS

In this section, we discuss results from functional connec-
tivity analyses between programmers and non-programmers,
and between novice, intermediate, and expert programmers.
We frame these into the following research questions:

• RQ1 How do brain connectivity patterns of programmers
compare to those of non-programmers?

• RQ2 Among programmers, how are brain connectivity
patterns mediated by experience?

A. RQ1
To understand how coding activities over time can influ-

ence the neural patterns of programmers, we first compared
programmers and non-programmers. We conducted seed-based
functional connectivity analyses on datasets A (n = 54) and
B (n = 37). The datasets are consistent in their preprocessing,
but differ in their composition: dataset A includes participants
without a record of programming experience, while dataset B
consists of graduate and undergraduate CS students. To investi-
gate group-level patterns, we first examined the functional con-
nectivity between all parcels (n = 400), yielding a 400× 400
correlation matrix for each participant. Since the scanning
parameters were slightly different between the two datasets,
we mitigated nuances in data collection by performing Fisher’s
z-transformation separately for both studies. In this manner,
the values in participants’ correlation matrices represent scaled
coefficients that follow a normal distribution for each group
between −1 and 1. We then averaged these matrices across
participants for both studies, yielding group-wide patterns of
connectivity (Fig. 1). In this study, we primarily focus on
seed-based analyses, which compare the statistical relationship
of one seed region to the activity in every other cortical
region. By contrast, the brain-wide measures of functional
connectivity depicted in Figure 1 show how the activity of
every region compares to that of every other region.

From these diagrams of functional connectivity, there are
noticeable qualitative differences between programmers and
non-programmers. Specifically, programmers exhibit lower
levels of functional connectivity (darker bands) with regions
in the medial frontal lobe (parcels 114-120, 319-324). By
contrast, non-programmers appear to have more variety in their
patterns of functional connectivity in these regions, perhaps
influenced by heterogeneity in this group’s educational back-
ground. Also, compared to non-programmers, programmers



(a) (b)
Fig. 1: Group-level functional connectivity measures for (a) programmers and (b) non-programmers. Values in these matrices
represent the functional connectivity (i.e., Pearson correlation) from every cortical brain region to every other cortical brain
region. Correlation coefficients in these figures were Fisher’s z-transformed to normalize their distribution. These values now
denote scaled correlation values following a normal distribution between -1 and 1.

demonstrate patterns of higher functional connectivity between
regions around parcels 75 and 275. These parcels correspond
to parietal areas on the left and right hemispheres of the brain,
and may illuminate differences in functional connectivity
from extended time spent on programming tasks. This can
be informative for future research into additional areas that
may specialize for programming-related tasks. To gain deeper
insight into key regions of interest, we then conducted an ROI-
to-ROI functional connectivity analysis using six seed regions
based on previous neuroimaging studies in SE. Broadly, these
regions can be grouped into categories related to Language
(LIFG, VWFA), Math (RITG, RSPL), and the DMN (LPCC,
RPCC). These regions, along with their Schaefer parcel num-
bers and MNI coordinates are summarized in Table III.

Again using an ROI-to-ROI functional connectivity analysis,
we compared programmers and non-programmers based on
their Fisher’s z-transformed correlation values from the seed
regions to all other parcels in the Schaefer atlas. To uncover
group-level differences, we performed two-tailed t-tests be-
tween these values for programmers and non-programmers,
and corrected for multiple comparisons using the Benjamini-
Hochberg method (q < 0.01). This analysis uncovered nu-
merous significant differences between programmers and non-
programmers that survived correction for multiple compar-
isons. These differences in functional connectivity can be seen
in Figure 2, with the five most significant results below the
threshold for each seed region reported in Table IV. All t-
statistics and q-values are included in Supplementary Material.
To summarize the main findings here, programmers demon-
strated significantly higher levels of functional connectivity
between the LIFG and three bilateral parcels in the ITG
(parcel 330: t = 4.573, q < 0.01; parcel 151: t = 4.545,
q < 0.01; parcel 69: t = 4.053, q < 0.01). The Left ITG
is well-studied as the Visual Word Form Area, where words
are theoretically decoded, with the information then passing to

Broca’s Area in the LIFG [41]. The Right ITG is theorized to
have a comparable role for decoding numbers [38], and also
performing arithmetic [42]. We chose seed regions near these
areas based on prior SE studies, and here find Broca’s Area
is more functionally connected in programmers to both.

For non-programmers, we found the same seed region
expressed significantly more functional connectivity with the
Right Anterior Insula (parcel 302: t = 4.436, q < 0.01)
and with the Left dorsomedial Prefrontal Cortex (dmPFC,
parcel 168: t = 4.081, q < 0.01). These regions have
been implicated in social processing [43], as well as self
evaluation [44], respectively. These results showing stronger
connections between the LIFG and the bilateral ITG sug-
gest that Broca’s Area may be enlisted more for language
or information processing in programmers, as opposed to
emotional processing. Next, we found that programmers had
significantly higher rates of functional connectivity between
the VWFA and a parcel in the Left Intraparietal Sulcus (LIPS,
parcel 73: t = 3.858, q < 0.01), a region often implicated
in the temporal ordering of attention [45]. Non-programmers
had significantly higher functional connectivity between the
VWFA and 12 other parcels, with the most significant being
bilaterally in the Cuneus (parcel 221: t = 6.414, q < 0.0001;
parcel 12: t = 5.872, q < 0.0001; parcel 213: t = 5.651,
q < 0.0001), and the bilateral vmPFC (parcel 117: t =
5.635, q < 0.0001; parcel 323: t = 5.605, q < 0.0001). The
Cuneus has reportedly been involved in emotional perception
and complex communicative tasks [46, 47], while the vmPFC
has been implicated in emotional regulation [48] and memory
consolidation [49]. A trend thus emerges where programmers
express lower levels of functional connectivity between our
seed regions and areas involved in emotional and social
processing, which may suggest a reassignment of certain brain
areas for information processing in programmers.

For regions related to math, we calculated the parcels that



Fig. 2: Significant differences between programmers and non-programmers in patterns of functional connectivity from seed
regions to other parcels (q < 0.01). Warm colors (red, yellow) represent t-values of regions where programmers had higher
levels of functional connectivity. Cool colors (blue, teal, pink) show t-values where non-programmers had higher levels of
functional connectivity. Seed regions are depicted to the left of the brain plots, grouped by function: (a) Language: parcel
172 is Broca’s Area, a primary region of the language network involved in speech production and hierarchical processing.
Parcel 133 is the Visual Word Form Area, theorized to decode letters and words from the visual system. (b) Math: parcel
339 is the Number Form Area, involved in arithmetic and the visual processing of Arabic numbers. (c) The Default Mode
Network: parcels 192 (Blue) and 395 (Pink) are located in a hub of the DMN, which is more active at rest, involved in episodic
memory processing and introspection. There were no significant differences for parcel 284, which was omitted from the figure.
Brain acronyms are as follows: (L/R)ITG - Left/Right Inferior Temporal Gyrus, dmPFC - dorsomedial Prefrontal Cortex, Cu.
- Cuneus, vmPFC - ventromedial Prefrontal Cortex, LIPS - Left Intraparietal Sulcus, SMG - Supramarginal Gyrus.

were functionally connected with the RSPL and the NFA.
There were no significant differences between programmers
and non-programmers in their patterns of functional con-
nectivity with the RSPL. For the NFA, compared to non-
programmers, programmers did not demonstrate significantly
more functional connectivity with any other parcels. However,
non-programmers showed significantly more functional con-
nectivity between the NFA and 18 other parcels in the Schaefer
Atlas. Again, this was especially pronounced bilaterally in the
vmPFC (parcel 117: t = 6.606, q < 0.0001; parcel 323: t
= 6.472, q < 0.0001) and bilatarally in the Cuneus (parcel
221: t = 5.35, q < 0.0001; parcel 114: t = 5.13, q < 0.0001).
Even though the NFA has classically been associated with
math and visual processing, here we found non-programmers
have higher rates of functional connectivity from this region
to areas associated with emotion and self reflection. A relation
between this area and the regulation of negative emotions has
been reported [50], but not investigated as thoroughly.

Programmers and non-programmers deviated the most
in their functional connectivity with respect to the LPCC
and RPCC in the DMN. Compared to programmers, non-
programmers had significantly more functional connectivity
between the LPCC and 35 other parcels. This was again most

significant bilaterally in the vmPFC (parcel 323: t = 5.269,
q < 0.001; parcel 117: t = 5.058, q < 0.001), the Cuneus
(parcel 19: t = 5.034, q < 0.001; parcel 221: t = 4.755, q <
0.001), and in the Right Anterior Cingulate Gyrus (RACG,
parcel 384: t = 4.92, q < 0.001). The RPCC expressed a
similar pattern of functional connectivity, where programmers
did not exhibit significantly higher levels of functional con-
nectivity than non-programmers did between this region and
other parcels. However, non-programmers demonstrated sig-
nificantly more functional connectivity between the RPCC and
four other parcels, with the most prominent being bilaterally
in the vmPFC (parcel 323: t = 4.769, q < 0.01; parcel 117:
t = 4.646, q < 0.01), the RACG (parcel 384: t = 4.215, q <
0.01), and the Left Cuneus (parcel 19: t = 4.156, q < 0.01).

Programmers exhibited higher levels of functional con-
nectivity between the Visual Word Form Area and the
Left Intraparietal Sulcus (q < 0.01), regions involved in
word processing and temporal attention, respectively. Non-
programmers had higher levels of functional connectivity
between seed regions and bilaterally in the Ventromedial
Prefrontal Cortex and the Cuneus (q < 0.01), which are in-
volved in emotional perception and regulation, respectively.



TABLE IV: Functional connectivity results between seed regions and parcels of the Schaefer Atlas, including t-statistics and
q-values, corrected for Multiple Comparisons with the Benjamini-Hochberg method (q < 0.01). Schaefer parcel numbers
corresponding to the brain areas are listed next to region names. We omitted the RSPL seed region from the table (parcel 284),
because its functional connectivity patterns were not significantly different between programmers and non-programmers.

Seed Regions Schaefer Parcel Programmers > Non-Programmers Non-Programmers > Programmers

133

(12) L Cuneus (t = 5.872, q < 0.0001)
Visual Word Form Area (117) L vmPFC (t = 5.635, q < 0.0001)

Decoding words (73) LSPL (t = 3.858, q < 0.01) (213) R Cuneus (t = 5.655, q < 0.0001)
(221) R Cuneus (t = 6.414, q < 0.0001)
(323) R vmPFC (t = 5.605, q < 0.0001)

Broca’s Area
172

(69) LITG (t = 4.053, q < 0.01) (168) L vmPFC (t = 4.081, q < 0.01)
Speech Production, Hierarchical Processing (151) LITG (t = 4.545, q < 0.01) (302) R Insula (t = 4.436, q < 0.01)

(330) RITG (t = 4.573, q < 0.01)

192

(19) L Cuneus (t = 5.034, q < 0.001)
L Posterior Cingulate Cortex (117) L vmPFC (t = 5.058, q < 0.001)

Default Mode Network — (221) R Cuneus (t = 4.755, q < 0.001)
(323) R vmPFC (t = 5.269, q < 0.001)
(384) RACG (t = 4.92, q < 0.001)

339

(114) L Cuneus (t = 5.13, q < 0.001)
Number Form Area (117) L vmPFC (t = 6.606, q < 0.0001)

Number recognition, Mathematical Processing — (213) R Cuneus (t = 4.958, q < 0.001)
(221) R Cuneus (t = 5.35, q < 0.0001)
(323) R vmPFC (t = 6.472, q < 0.0001)

395

(19) L Cuneus (t = 4.156, q < 0.01)
R Posterior Cingulate Cortex — (117) L vmPFC (t = 4.646, q < 0.01)

Default Mode Network (323) R vmPFC (t = 4.769, q < 0.01)
(384) RACG (t = 4.215, q < 0.01)

Brain region acronyms: LSPL - Left Superior Parietal Lobule, vmPFC - ventromedial Prefrontal Cortex, (L/R)ITG - Left/Right Inferior
Temporal Gyrus, RACG - Right Anterior Cingulate Cortex.

B. RQ2

To understand how more time spent on coding activities
can have a lasting impact on the functional organization of
the brain, we next compared novice, intermediate, and expert
programmers. Splitting the sample into three groups allowed
us to analyze how neurological changes might progress. The
intermediate group provides both a buffer between novices
and experts for t-tests, and a continuum to analyze with linear
regression, which we detail below. For this research question,
we analyzed resting state scans from datasets C (n = 33) and
D (n = 26), consisting entirely of programmers. To uncover
trends of functional connectivity over time, we split our sample
into three groups based on their years of coding experience:
novices (y.e. < 3), intermediates (3 <= y.e. <= 4), and ex-
perts (y.e. > 4). We used the same six seed regions for an ROI-
to-ROI functional connectivity analysis for the three groups,
and performed two tailed t-tests between participants’ z-scored
correlation values. After correcting for multiple comparisons,
no significant correlations survived. Factors contributing to this
null result may include our relatively small sample size, the
limited range of participants’ years of coding experience, and
the inherently low effect sizes in resting state data [51]. We
discuss these factors further in Section VI.

None of our six hand-picked seed regions demonstrated
functional connectivity differences that survived correction
for multiple comparisons. However, there is a possibility that
group differences relevant for coding activities were present in
regions we did not consider as seeds. To test this, we imple-
mented a data-driven analysis by first classifying the groups
using GPC, then deriving seed regions based on the brain

regions deemed important for distinguishing between groups.
We again corrected for multiple comparisons to mitigate the
false discovery rate. We first performed binary classifications
between novices and intermediates, then between novices and
experts. Our classification attained BAC accuracies above
chance of 60.87% for novices and intermediates, and 63.38%
for novices and experts. Using the brain map of feature
weights, we isolated the clusters with the highest weights [35].
Specifically, we arbitrarily extracted the 5 largest clusters in
the two classifications influencing the model to decide novice,
intermediate, or expert. Many of these clusters were located
in the cerebellum, which is not covered by the Schaefer Atlas.
We therefore performed functional connectivity analysis using
the Schaefer parcels associated with these cortical clusters as
seeds, which are detailed in Table V.

TABLE V: Data-driven seed regions based on clusters that
were ascribed high weights for classifications between groups.
MNI Coordinates here represent peak weights in the clusters.

Group Region MNI Coordinates Parcel
Experts L Lingual Gyrus [-24, 80, -18] 9
Experts L Postcentral Gyrus [-16, -30, 78] 67
Interm. L Superior Frontal Gyrus [-20, 70, 4] 176
Novices L Superior Frontal Gyrus [-7, -49, 27] 183
Interm. R Superior Temporal Gyrus [60, 8, -2] 231
Experts R Postcentral Gyrus [62, 10, 16] 242
Interm. R Middle Frontal Gyrus [22, 68, -6] 341
Interm. R Middle Frontal Gyrus [34, 62, -2] 343
Novices R Middle Frontal Gyrus [26, 60, 26] 348
Novices R Frontal Pole [2, 68, 0] 380
Interm. R Superior Frontal Gyrus [14, 52, 40] 386
Novices R Superior Frontal Gyrus [10, 34, 58] 389
Novices R Superior Frontal Gyrus [10, 20, 62] 391



We conducted another ROI-to-ROI functional connectivity
analysis between the data-driven seed regions listed in Table V,
and all other parcels in the Schaefer atlas. We similarly
applied a Fisher’s z-transformation, and conducted two-tailed
t-tests between the z-scores of novices, intermediates, and
experts. We again corrected for multiple comparisons using the
Benjamini-Hochberg method. After this process, we found a
significant difference between experts and novices in the level
of functional connectivity between a seed region in the Left
Lingual Gyrus (parcel 9) with a region in the Left Precentral
Gyrus (PreCG, parcel 40). Specifically, as participants’ years
of coding experience increases, their functional connectivity
between these two regions decreases (t = 4.469, q < 0.05).
This difference may be innate among participants, so a lon-
gitudinal study would be required to establish causality. That
being said, the Lingual Gyrus has been linked to visuospatial
processing during reading and the perception of physical
objects [52, 53], while the PreCG has been associated with
articulation and oral movements [54]. Considering code as a
‘language’ that is primarily comprehended rather than spoken,
these results suggest that more time spent on programming
tasks may lead to a dissociation between these regions involved
in visual processing during reading and oral movements.

Age is a potential confounding variable, where programmers
with more years of experience are likely to be older. Indeed,
participants in the novice group are significantly younger than
those in both the intermediate (p < 0.05) and the expert group
(p < 0.001). As such, the significant difference in functional
connectivity between parcels 9 and 40 may be due to age
related effects rather than programming activities. To explore
this possibility, we performed Ordinary Least Squares regres-
sion with age and years of experience as predictor variables,
and functional connectivity measures between parcels 9 and 40
as the dependent variable. We analyzed novices, intermediates,
and experts together (n = 59) to both improve statistical
power and depict a continuum of coding experience. We found
that years of coding experience is a strong and statistically
significant predictor of functional connectivity between these
two regions (β = -0.041, t = -2.788, p < 0.01), while age is not
(β = 0.011, t = 0.610, p = 0.5). Thus, we can conclude with
more certainty that this decrease in functional connectivity is
attributable to years of coding experience, and not age (Fig. 4).
Our results indicate that age is actually associated with a slight
increase in functional connectivity between these two regions.

A decrease in functional connectivity between regions that
comes with more experience may be counter-intuitive, but a
similar pattern has been reported in Cognitive Neuroscience.
In elite gymnasts for instance, there is lower functional
connectivity within the cerebellum, an area known for mo-
tor control, and within fronto-parietal and cingulo-opercular
networks [26]. One may think that an elite gymnast would
have higher functional connectivity within motor and attention
regions. However, those authors interpreted the results to
suggest that elite gymnasts were more automatic and efficient
in their movements, and therefore benefited from less connec-
tivity. In this study, this difference in our participants may be

Fig. 3: As years of coding experience increases, there is
a significant decrease in functional connectivity between a
region in the Left Lingual Gyrus and the Left Precentral Gyrus
(q < 0.05). PreCG - Precentral Gyrus.

Fig. 4: Functional connectivity between the Left Lingual Gyrus
(Schaefer parcel 9) seed region and a region in the Precentral
Gyrus (Schaefer parcel 40) as it relates to years of coding
experience. The line of best fit was calculated using the y-
intercept (0.3056) and beta weight from the linear model
detailed in Section IV-B.

intrinsic, and it may also be task-dependent. Nonetheless, we
can interpret our findings to suggest that weakened functional
connectivity between these two regions may reflect enhanced
neural efficiency for programming tasks.

As programmers’ years of experience increases, the func-
tional connectivity decreases between a region in the Left
Lingual Gyrus and a region in the Precentral Gyrus (q <
0.05), two regions known for visual processing during
reading and articulation/oral movements, respectively. This
pattern of functional connectivity is not explained by age,
a possible confound (p < 0.01).

V. DISCUSSION

In this study, we uncovered meaningful changes in network
activity of the brain due to programming experience. Here we
present further interpretations of our findings and discuss their
potential relevance for CS Education, practice, and research.

Interpretations We found consistent differences between
programmers and non-programmers in their patterns of func-
tional connectivity at rest. First and foremost, we found that
in programmers, there is a stronger functional link between
a low-level language processing region (VWFA) and another



region involved in the temporal ordering of attention (LIPS).
This connection has not previously been reported in SE, and
perhaps reflects the coordination between programmers’ visual
and temporal attention mechanisms. As a potential explana-
tion, there is an intrinsic order of execution in code, which is
not necessarily present in natural language. Furthermore, code-
bases can have large and complicated structures, which may
put additional strain on programmers to maintain a coherent
understanding of the code. These factors may promote higher
functional connectivity between these two regions for decod-
ing low-level language and ordering temporal attention. We
also found strengthened connectivity in programmers between
the VWFA and another primary region of the language net-
work, Broca’s Area, which is thought to be involved in speech
production and hierarchical processing [55]. The functional
connection we found between two language regions may be
unsurprising, but previous research found the VWFA is more
strongly connected in adults to attention regions [41]. Those
authors posited that the VWFA may in fact be responsible for
integrating language and attention processes, so our results
suggest that coding activities may selectively enhance the
VWFA’s functional connectivity with a hierarchical language
region and a temporal attention region. These functional links
present new opportunities for research and training, which
we discuss below. Also noteworthy, we replicated previous
findings of stronger functional connectivity for programming
between Broca’s Area and the visual Number Form Area [7],
which is thought to decode numeric symbols [38].

Across the chosen seed regions, we found that non-
programmers show significantly higher functional connectivity
with regions involved in social cognition and emotional pro-
cessing [46, 47, 48]. We are hesitant to draw conclusions about
the social and emotional states of programmers without further
carefully designed studies, but these results might imply
certain longitudinal impacts from coding activities, and present
intriguing avenues to explore in future work or interventions.
For example, this may elucidate a cognitive distinction be-
tween natural language and code-related tasks, where code
is a formal series of instructions, but natural language is
inherently social and communicative. Previous study indicates
that code and language processes become less distinguishable
in coders with higher GPAs [8]. In our study, we considered
years of experience, instead of GPA, and found evidence of
possible dissociation between language and code; increased
years of experience correlated with decreased connectivity
between areas involved in reading and articulation. This may
indicate nuances in using GPA versus years of experience,
where the former may show effects of intensive study or innate
differences, and the latter may show changes over time.

Implications Our findings highlighting differences in func-
tional connectivity related to language, attention, and social
cognition can be relevant for CS Education, practice, and
further research. In training new programmers, these results
present opportunities for tailoring educational materials to
the cognitive profile of programming. For instance, many
programming tools for new programmers are visual and block-

based [56]. Our results, along with those of prior neuroimaging
studies in SE, consistently underscore the importance of lan-
guage regions for coding tasks [2, 7, 9]. This might imply an
unmet need for early educational materials that target language
components of programming, or how to combine language
and programming education together. In this study, we found
increased connectivity in programmers between language pro-
cessing (VWFA, BA), temporal attention (LIPS), and mathe-
matical processing regions (NFA). Researchers, educators, and
companies could leverage this information to design novel
training materials, such as word problems similar to those
in math education that use narratives to train concepts like
multiplication, but instead for concepts like loops or variables.
Informally, if these patterns of connectivity arise naturally
after years of programming, perhaps targeted training mate-
rials could accelerate this connectivity. Problems involving
language and computational thinking may help promote brain
connectivity that is beneficial for coding, but proper testing
would be necessary. More broadly, our results suggest that
targeting language skills, temporal attention, and mathematical
processing may help novice programmers learning to code.

Previous SE research has asserted that novices and experts
differ most notably in the knowledge they possess [3, 6].
Moreover, researchers have hypothesized that expert pro-
grammers efficiently encode this knowledge into structures
of syntax and semantics, domain information, and control
flow, among others [6]. This allows expert programmers to
recognize design patterns, form more insightful hypotheses
about unfamiliar code, and more effectively find root causes
of bugs [3, 4, 5]. In this study, we compared programmers
based on their years of coding experience. We found evidence
that more experienced programmers become more efficient
in their cognition, where the functional connectivity between
two brain areas decreases with years of coding experience.
This finding may be representative of our study population,
which consists of graduate and undergraduate CS students,
and warrants future longitudinal studies. Nonetheless, we did
not find significant differences in brain regions associated with
knowledge. In Cognitive Neuroscience, researchers have used
fMRI analyses such as searchlight or Representation Similarity
Analysis (RSA) to analyze brain activity in finer detail. Prior
research has identified voxel representations of the same con-
cepts elicited by either words or pictures [57], suggesting these
analysis techniques could be applied in SE. More concretely,
future research could scan participants completing coding
tasks or use publicly available fMRI datasets [20, 21, 22],
and apply searchlight analysis or RSA to study potential
knowledge differences between experts and novices.

In this study, we have shown that resting state scans are a
powerful and convenient data source for researchers in SE to
study the cognition of programming. We should note, however,
that the effect sizes may be weaker in resting state data
compared to those of task-based studies [23]. This can be seen
in our null result in which there were no significant differences
between novices, intermediates, and experts for the seed re-
gions we chose. In conducting resting state studies, researchers



can lower this hurdle by studying a large effect (i.e., perhaps
programmers with a wider range of experience), increasing
their statistical power with more participants, or approaching
the data with more targeted hypotheses to reduce the impact
of correcting for multiple comparisons. In this study, the
differences between programmers and non-programmers were
demonstrably large enough to expose meaningful changes in
network activity as a result of coding. In this manner, we hope
to provide guidance for researchers who wish to analyze this
type of data and discover new knowledge about human and
programming in the future.

VI. LIMITATIONS

In this section, we consider limitations of this study that may
threaten the validity of our findings. These can be grouped into
factors that may affect generalizability, and analysis decisions
that may have influenced the results.

Generalizability First, brain activity was measured in an
fMRI scanner, which is a highly restrictive experimental
environment. As such, participants’ brain activity might be
unnaturally heightened or altered. Though all participants
experienced the same experimental setup, which may control
these effects, we acknowledge that anxious or claustrophobic
participants may still exhibit heightened brain activity. Second,
our participant sample may be relatively homogeneous, where
most participants were college students. To mitigate this risk,
our sample of non-programmers is diverse in its educational
background, and may therefore offer a more robust comparison
with programmers. Next, the programmers in our dataset may
not represent a wide range of programming experience since
most have between one and four years of coding experience,
and some participants for whom we did not have educa-
tional information may have had programming experience.
Furthermore, our expert group may not be representative of
professional developers. Despite these limitations, we uncov-
ered meaningful and statistically significant changes using
conservative thresholds resulting from even this short time
spent coding. We still acknowledge there may be stronger
long-term effects of coding activities with a more experienced
sample, and present our results as an initial, exploratory analy-
sis of programming experience using resting state fMRI scans.
Lastly, we attempted to isolate programming activities as an
independent variable, but differences between populations in
our study may be due to other variables or components of the
CS degree. We mitigated these risks by correcting for multiple
comparisons to reduce the false discovery rate, and performing
linear regression in Section IV-B to explicitly test whether our
findings were due to age as a confounding variable.

Construct Validity Our final results may have been influ-
enced by our design decisions, as well as the nature of fMRI
data itself. First, we compared two datasets whose scanning
parameters were different. Combining fMRI datasets can be
fraught with challenges, and the test-retest reliability can be
low [32]. We acknowledge the risks and strove to mitigate
them by first ensuring the data was all collected from the
same scanner, then performing the same preprocessing steps,

which are both recommended as best practice in neuroscience
for combining datasets [29, 58]. Furthermore, we spatially
smoothed the fMRI data and used an ROI-to-ROI functional
connectivity analysis, both of which can improve the signal
to noise ratio [23]. Next, we compared the datasets only
based on their downstream statistics related to functional
connectivity [32, 59]. Regardless, we encourage and welcome
others to replicate the analysis we have done in this study.

The chosen seed regions might affect the functional con-
nectivity analysis [15]. We attempted to mitigate this risk by
precisely choosing seed regions based on MNI coordinates
and figures in previous studies [7, 19, 22]. Furthermore, for
replicability we included both Schaefer parcel numbers and
MNI coordinates with respect to our seed regions and results.
Next, we corrected our results for multiple comparisons by
following established methods in Cognitive Neuroscience [40]
and using a more conservative threshold of q < 0.01 (instead
of q < 0.05) in our analyses. Lastly, we hand-classified com-
ponents as signal or noise, as described in Section III, but did
not formally obtain rater agreement. Some components may
have been misclassified, which we attempted to mitigate by
agreeing upon and following established criteria in Cognitive
Neuroscience. These criteria rely on objective characteristics
about component frequency, power spectra, and location.

VII. CONCLUSION

We present the first analysis of resting state fMRI data in
SE. Analyzing resting state data enabled the first neurological
comparison between programmers and non-programmers, and
the concatenation of multiple datasets. We leveraged this
data to study the influence of programming activities on the
brain’s functional organization. To this end, we compared non-
programmers with programmers, then looked within program-
mers to explore how these neurological changes are mediated
by years of experience. We found that programmers expressed
stronger functional links compared to non-programmers in re-
gions associated with language processing, temporal attention,
and mathematical processing. Meanwhile, non-programmers
expressed higher levels of connectivity with regions associated
with social cognition and emotional processing. We interpret
these findings to suggest that programming activities may
selectively enhance the connectivity from language processing
regions to temporal attention and hierarchical processing areas.
The fMRI scanning parameters were different between these
two datasets, which we attempted to mitigate, but we welcome
any efforts to replicate our findings. Within our sample of
programmers, we found a significant decrease in functional
connectivity mediated by expertise between two regions asso-
ciated with visual processing during reading and articulation,
respectively. We interpret these findings to suggest increased
neural efficiency in more experienced programmers.
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